bjh guideline

# Guidelines for the use of platelet transfusions

Lise J. Estcourt,<sup>1</sup> Janet Birchall(Writing Group Chair)<sup>2</sup>, Shubha Allard(BCSH Task Force Member)<sup>3</sup>, Stephen J. Bassey,<sup>4</sup> Peter Hersey,<sup>5</sup> Jonathan Paul Kerr,<sup>6</sup> Andrew D. Mumford,<sup>7</sup> Simon J. Stanworth<sup>8</sup> and Hazel Tinegate<sup>9</sup> on behalf of the British Committee for Standards in Haematology

<sup>1</sup>NHSBT and Radcliffe Department of Medicine, University of Oxford, Oxford, <sup>2</sup>NHSBT and Department of Haematology, North Bristol NHS Trust, Bristol, <sup>3</sup>NHSBT and Department of Haematology, Royal London Hospital, London, <sup>4</sup>Department of Haematology, Royal Cornwall Hospital Trust, Cornwall, <sup>5</sup>Department of Critical Care Medicine & Anaesthesia, City Hospitals Sunderland NHS Foundation Trust, Sunderland, <sup>6</sup>Department of Haematology, Royal Devon & Exeter NHS Foundation Trust, Exeter, <sup>7</sup>School of Cellular and Molecular Medicine, University of Bristol, Bristol, <sup>8</sup>NHSBT and Department of Haematology, John Radcliffe Hospital, Oxford and <sup>9</sup>NHSBT, Newcastle upon Tyne, UK

Keywords: platelets, blood transfusion, guideline.

The demand for platelets in England was stable at around 220 000 adult therapeutic doses (ATD) per year until 2007/8 at which point demand has increased year-on-year to 275 000 ATD in 2014/15, an increase of 25%. Similar rises in demand have been seen in Australia and the United States. A recent review which considered causes for this dramatic rise identified that an ageing population and an increase in the incidence of haematological malignancies (with increased treatment intensity, duration and survival) accounted for most of this change (Estcourt, 2014). In 2012 the population in the UK aged over 70 years was 7.5 million. By 2046 this number is expected to reach 15 million (Office of National Statistics (ONS) 2013). In addition, since 1990, the number of haematopoietic stem cell transplants performed in Europe has risen, from 4200 to over 30 000 annually (Passweg et al, 2012).

Although a national audit of platelet use in haematology identified that 28% of transfusions were outside of guidelines (Estcourt *et al*, 2012a), these findings demonstrate less inappropriate use than a previous audit (Qureshi *et al*, 2007). An increase in the proportion of inappropriate use is therefore unlikely to have contributed significantly to recent changes in demand (Estcourt, 2014).

Currently up to 67% of all platelets are used in the management of patients with haematological malignancies (Cameron *et al*, 2007; Greeno *et al*, 2007; Pendry & Davies, 2011; Jones *et al*, 2013; Charlton *et al*, 2014). Much of the

Correspondence: Dr Janet Birchall, c/o BCSH Secretary, British Society for Haematology, 100 White Lion Street, London N1 9PF, UK.

E-mail: bcsh@b-s-h.org.uk

© 2016 John Wiley & Sons Ltd British Journal of Haematology, 2017, **176,** 365–394 remainder are used in cardiac surgery (7–10%) and in intensive care (5–9%).

In contrast to platelet demand, the donor base is steadily dropping, with a 35% reduction in active donors from 1.893 million in 2000 to 1.231 million in 2015 (NHS Blood & Transplant, unpublished data). As the majority of platelets in the UK are collected from approximately 14 000 registered platelet donors (apheresis platelets), and whole blood donors give blood on average 1.7 times a year this could have a significant impact on the future supply (European Blood Alliance 2015, European Committee (Partial Agreement) on Blood Transfusion CD-P-TS 2016).

### Scope

This guideline aims to provide practical advice on platelet transfusions to help clinicians to decide when support is expected to be beneficial and to reduce inappropriate use. If the reason for thrombocytopenia is unclear, further investigation is required as this is likely to influence management. This document will cover practice in adults relevant to the UK and replace the 2003 British Committee for Standards in Haematology (BCSH) platelet use guideline (British Committee for Standards in Haematology Blood Transfusion Task Force 2003). A one page summary document is available in Appendix 1. The indications for platelet transfusion in children and neonates and more general specifications, such as cytomegalovirus (CMV) status and irradiation, are not included, and can be found elsewhere (New et al, 2016; Advisory Committee on the Safety of Blood, Tissues and Organs (SaBTO) 2012, Treleaven et al, 2011).

### Methodology

The classification of platelet transfusion into either 'therapeutic', to treat bleeding, or 'prophylactic', to prevent bleeding, was based on the modified World Health Organization

> First published online 23 December 2016 doi: 10.1111/bjh.14423



-

(WHO) bleeding score (Table I) (Stanworth *et al*, 2013a). Recommendations for prophylactic transfusion relate to patients with bleeding scores of 0 or 1 and therapeutic transfusion to patients with bleeding scores of 2 or higher.

For each indication, the recommendations include a threshold or target platelet count and a suggested dose, when relevant.

The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) nomenclature [Audit tool (Appendix S1)] was used to evaluate levels of evidence and to assess the strength of recommendations. The GRADE criteria are specified on the BCSH website (http://www. bcshguidelines.com/BCSH\_PROCESS/42\_EVIDENCE\_LEVELS\_ AND\_GRADES\_OF\_RECOMMENDATION.html) and the GRADE working group website (http://www.gradeworkinggroup.org).

Literature review details. A search of published literature was undertaken using the evidence from several systematic reviews that are either currently being undertaken by members of the writing group (Estcourt *et al*, 2014a,b,c), or that have been recently published (Hedges *et al*, 2007; van Veen *et al*, 2010; Lieberman *et al*, 2013; Pavenski *et al*, 2007; Van Veen *et al*, 2010; Lieberman *et al*, 2014; Vassallo *et al*, 2013; Wardrop *et al*, 2015; Nahirniak *et al*, 2015). This was supplemented by searching PubMed and the United Kingdom Blood Transfusion Services (UKBTS)/Systematic Review Initiative (SRI) Transfusion Evidence Library (www.transfusionevidencelibrary.com) up to November 2014 using specific search terms relevant to each section of the guide-lines.

*Working Group Membership.* The guideline group was selected to be representative of UK-based medical (anaesthetics, benign and malignant haematology, haemostasis, transfusion) and laboratory experts with practical experience in platelet transfusion.

*Review.* Given the breadth of application, the draft guideline was provided to sounding board members of the Haematooncology, General Haematology, Haemostasis and Thrombosis, and Transfusion Task Forces of the BCSH for comment and subsequent revision.

### Summary of key recommendations

• If the reason for thrombocytopenia is unclear, further investigation is required to determine appropriate management (1A)

Recommendations for Prophylactic Transfusion of Platelets to Patients with Thrombocytopenia Because Of Reversible Bone Marrow Failure Where Recovery Is Anticipated:

• Give prophylactic platelet transfusions (platelet transfusions to patients who do not have clinically significant bleeding [World Health Organization (WHO) grade 0 or 1] and do not require a procedure) to patients with reversible bone marrow failure receiving intensive

Table I. Modified World Health Organization bleeding score (Stanworth et al, 2013a).

| Grade   | Type of bleeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grade 1 | <ul> <li>Petechiae/purpura that is localized to 1 or 2 dependent sites, or is sparse/non-confluent</li> <li>Oropharyngeal bleeding, epistaxis &lt;30 min duration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Grade 2 | <ul> <li>Melaena, haematemesis, haemoptysis, fresh blood in stool, musculoskeletal bleeding, or soft tissue bleeding not requiring red cell transfusion within 24 h of onset and without haemodynamic instability</li> <li>Profuse epistaxis or oropharyngeal bleeding &gt;30 min</li> <li>Symptomatic oral blood blisters, i.e. bleeding or causing major discomfort</li> <li>Multiple bruises, each &gt;2 cm or any one &gt;10 cm</li> <li>Petechiae/purpura that is diffuse</li> <li>Visible blood in urine</li> <li>Abnormal bleeding from invasive or procedure sites</li> <li>Unexpected vaginal bleeding saturating more than 2 pads with blood in a 24-h period</li> <li>Bleeding in cavity fluids evident macroscopically</li> <li>Retinal hemorrhage without visual impairment</li> </ul> |
| Grade 3 | <ul> <li>Bleeding requiring red cell transfusion specifically for support of bleeding within 24 h of onset and without haemodynamic instability</li> <li>Bleeding in body cavity fluids grossly visible</li> <li>Cerebral bleeding noted on computed tomography (CT) without neurological signs and symptoms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Grade 4 | <ul> <li>Debilitating bleeding including retinal bleeding and visual impairment*</li> <li>Non-fatal cerebral bleeding with neurological signs and symptoms</li> <li>Bleeding associated with haemodynamic instability (hypotension, &gt;30 mmHg change in systolic or diastolic blood pressure)</li> <li>Fatal bleeding from any source</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

\*Visual impairment is defined as a field deficit, and patients with suspected visual impairment require an ophthalmological consultation.

chemotherapy or undergoing allogeneic haematopoietic stem cell transplantation (HSCT) to maintain a platelet count at or above  $10 \times 10^9$ /l (1B)

- Use only one adult dose (one unit) routinely for prophylactic platelet transfusions (1A)
- Consider not giving prophylactic platelet transfusions to well patients with no evidence of bleeding who have had an autologous stem cell transplant (2B)
- Consider increasing the threshold for prophylactic platelet transfusion to between 10 and 20  $\times$  10<sup>9</sup>/l in patients judged to have additional risk factors for bleeding. Individual review is required. (2C)

Recommendations for Prophylactic Transfusion of Platelets to Patients with Thrombocytopenia Because Of Chronic Bone Marrow Failure, Where Recovery Is Not Anticipated:

- Use a 'no prophylactic platelet transfusion' strategy for asymptomatic patients with chronic bone marrow failure (including those taking low dose oral chemotherapy or azacitidine) (2B)
- Give prophylactic platelet transfusions to patients with chronic bone marrow failure receiving intensive treatment (1B)
- Manage patients with chronic bleeding of WHO grade 2 or above individually, according to the severity of their symptoms and signs. Consider a strategy of prophylaxis (e.g. twice a week) (2C)

Recommendations for Prophylactic Transfusion of Platelets to Other Patient Groups:

• Use the platelet count thresholds for reversible bone marrow failure as a general guide for prophylactic platelet transfusion in patients with critical illness in the absence of bleeding or planned procedures. (2C)

Recommendations for Prophylactic Platelet Transfusion Prior To Procedures or Surgery:

- Whenever possible use a procedure/equipment associated with the lowest bleeding risk. Apply local measures, such as compression, to reduce the risk of bleeding post-procedure. (1C)
- Do not give platelet transfusions routinely prior to:
  - o bone marrow aspirate or trephine biopsy (1B)
  - o peripherally inserted central catheters (PICCs) (2C)
  - o traction removal of tunnelled CVCs (2C)
  - o cataract surgery (2C)
- Consider performing the following procedures above the platelet count threshold indicated
  - o venous central lines (both tunnelled and un-tunnelled), inserted by experienced staff using ultrasound guidance techniques, when the platelet count is  $>20 \times 10^9$ /l. (1B)

- o lumbar puncture when the platelet count is  $\geq 40 \times 10^9$ /l. (2C)
- o insertion/removal of epidural catheter when the platelet count is ≥80 ×  $10^9$ /l. (2C)
- o major surgery when the platelet count is  $>50 \times 10^9/l$  (1C)
- $_{0}$  neurosurgery or ophthalmic surgery involving the posterior segment of the eye when the platelet count is >100  $\times$  10<sup>9</sup>/l (1C)
- o percutaneous liver biopsy when the platelet count is  $>50 \times 10^9/l$  (2B). Consider trans-jugular biopsy if the platelet count is below this level (2B)
- Prior to renal biopsy ensure potential risk factors for bleeding are corrected: anaemia (iron and erythropoietin), uraemia (dialysis) (1B). If renal biopsy is urgent consider desmopressin (DDAVP) pre-procedure (1B) or oestrogen if time allows (2B)
- Avoid platelet transfusion in renal failure because infused platelets will acquire a dysfunction similar to the patients' own platelets and platelet transfusion may result in alloimmunisation (1B)

Recommendations for Therapeutic Platelet Transfusions:

- In severe bleeding, maintain the platelet count above  $50 \times 10^9$ /l. Consider empirical use for the initial management of major haemorrhage (1C).
- In patients with multiple trauma, traumatic brain injury or spontaneous intracerebral haemorrhage, maintain the platelet count above 100 × 10<sup>9</sup>/l (2C)
- In patients with bleeding that is not considered severe or life-threatening, consider platelet transfusion if the platelet count is below  $30 \times 10^9/l$  (2C)

Recommendations for Platelet Function Disorders (Congenital):

- For first line treatment or prevention of bleeding, consider recombinant factor VIIa (rFVIIa) in Glanzmann thrombasthenia and tranexamic acid (TXA) plus desmopressin in other congenital platelet function disorders (2B)
- If pharmaceutical therapies are contraindicated, ineffective or if there is high risk of bleeding, consider transfusion of platelets. In Glanzmann thrombasthenia, consider human leucocyte antigen (HLA)-matched platelets. (2C)

Recommendations for Platelet Function Disorders (Acquired):

- Do not use platelet transfusion pre-procedure when antiplatelet agents have not been discontinued (2C)
- Use general haemostatic measures to treat bleeding in patients during treatment with aspirin, P2Y<sub>12</sub> antagonists or glycoprotein IIa/IIIb inhibitors. If necessary, consider drug cessation and reversal of the effect of coprescribed anticoagulants (2C).

13652141, 2017, 3, Downloaded from https://onlinelibary.wiley.com/doi/10.1111/bjh.1423 by Harvard University, Wiley Online Library on [1009/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- Use TXA to counteract the effect of anti-platelet agents when a risk/benefit assessment would support this (1B)
- Consider the use of platelet transfusion as an additional measure to those suggested above for critical bleeding (2C).
- Consider platelet transfusion to prevent bleeding in severe thrombocytopenia (platelet count  $< 1 \times 10^{9}$ /l) caused by abciximab (2C).

Recommendations for Immune Thrombocytopenia (ITP):

- Do not use prophylactic platelet transfusions in patients with autoimmune thrombocytopenia (1C)
- Only use platelet transfusion prior to a procedure or surgery when other treatment has failed and/or the intervention is urgent. Usual threshold counts may be unachievable or unnecessary and individual case review is required (1C)
- Give therapeutic platelet transfusions (more than one dose) to treat serious bleeding (1C). In ITP, consider co-administration of intravenous immunoglobulin in addition to the platelet transfusion (2C). In post-transfusion purpura (PTP), intravenous immunoglobulin is the treatment of choice (1C)

Contraindications to Platelet Transfusions:

• In patients with thrombotic microangiopathies only use platelet transfusions to treat life-threatening bleeding (1C)

**Risks from Platelet Transfusions:** 

- Hospitals should establish a strategy to maximise the transfusion of ABO compatible platelets, especially to patients who require regular platelet support (2B).
- It is acceptable to use ABO incompatible platelets to reduce wastage. Platelets tested and negative for high titre haemagglutinins and non-group O platelets are associated with a lower risk of haemolysis. Pooled platelets suspended in Platelet Additive Solution (PAS) would also be expected to reduce this risk. (1B).
- RhD negative girls or women of childbearing potential should receive RhD negative platelets. If unavailable, RhD positive platelets can be given with anti-D prophylaxis. (1B).
- For RhD negative boys under 18 years of age, those who already have anti-D antibodies, and transfusiondependant adults, the platelets of choice are RhD negative. RhD positive platelets should be given if RhD negative platelets are unavailable or to prevent wastage of RhD positive components. Anti-D prophylaxis is not required (1B).
- In patients with a history of allergic transfusion reactions, apart from mild, use platelets suspended in PAS. If reactions continue or are severe, washed platelets (resuspended in 100% PAS) may be required (1B).

• All clinical areas where platelet transfusions are administered should have access to guidance on the investigation and management of acute transfusion reactions to blood and blood components. We recommend that these are based on BCSH guidance (Tinegate *et al*, 2012) (1A).

Recommendations for Platelet Refractoriness:

- ABO matched platelets should be used when available to maximise increments (2C)
- Patients with hypoproliferative thrombocytopenia who are refractory to platelet transfusions solely due to nonimmune factors should not receive HLA-selected platelet transfusion (2C)
- Patients with hypoproliferative thrombocytopenia who are refractory to platelet transfusions and have class I HLA antibodies should receive class I HLA-selected platelet transfusion (Harris *et al*, 2009) (2C)
- Patients with hypoproliferative thrombocytopenia who continue to be refractory to HLA-selected platelet transfusions and have human platelet antigen (HPA) antibodies should receive HPA-selected platelet transfusion (2C)
- Patients with hypoproliferative thrombocytopenia who are not refractory to platelet transfusion should not receive HLA-selected or HPA-selected platelets (2C).

Recommendations for Other Alternatives or Additions to Platelet Transfusion:

- Administer TXA early in trauma patients who are bleeding/at risk of bleeding (1A)
- Use TXA in surgical patients expected to have greater than a 500 ml blood loss, unless contraindications exist (1A)
- Consider TXA as an alternative or in addition to therapeutic platelet transfusion, in patients with chronic thrombocytopenia caused by bone marrow failure (2B)
- In severe perioperative bleeding/bleeding associated with major trauma give fibrinogen (concentrate or cryoprecipitate) if plasma fibrinogen concentration is <1.5 g/l or if signs of a functional fibrinogen deficit are seen on near patient testing (1C).
- Use thrombopoietin receptor agonists in ITP according to international guidelines. At present there is insufficient evidence to recommend these agents in other patient categories (1A).

# Prophylactic transfusion of platelets to patients with thrombocytopenia because of reversible bone marrow failure where recovery is anticipated

The evidence for these recommendations is based on studies in patients with haematological malignancy causing thrombocytopenia due to the disease or its treatment. Other patient populations are considered separately.

# Should prophylactic platelet transfusions be given routinely?

A systematic review identified six randomised controlled trials (RCTs) that compared a prophylactic versus therapeutic platelet transfusion strategy (Crighton et al, 2015). Four of the included studies were conducted at least 30 years ago and used out-dated methods of platelet component production and patient supportive care. Two of the included studies were recent large RCTs (Wandt et al, 2012; Stanworth et al, 2013a), both of which showed that prophylactic platelet transfusions reduced the risk of bleeding when all patients with haematological malignancies receiving treatment (e.g. chemotherapy or transplantation) were considered (Crighton et al, 2015), but this effect was not seen in a pre-specified sub-group patients receiving autologous haematopoietic stem cell transplants (HSCT) (Table II) (Stanworth et al, 2014). This finding indicates that prophylactic transfusion should continue to be the standard of care in patients receiving intensive chemotherapy or allogeneic transplantation but may not be appropriate in low risk groups with short periods of thrombocytopenia.

### What platelet transfusion threshold should be used?

A systematic review identified three RCTs that compared different platelet transfusion thresholds (Estcourt *et al*, 2012b). Two compared a threshold of  $20 \times 10^9$ /l vs.  $10 \times 10^9$ /l, whereas the third compared a threshold of  $30 \times 10^9$ /l vs.  $10 \times 10^9$ /l. A fourth RCT excluded from the systematic review compared a threshold of  $20 \times 10^9$ /l vs.  $10 \times 10^9$ /l (Zumberg *et al*, 2002). A meta-analysis of all four studies (658 patients) showed that the  $10 \times 10^9$ /l threshold was not associated with increased bleeding in comparison with a higher threshold and also showed a significant reduction in the number of platelet transfusions given (Estcourt *et al*, 2011). However, this meta-analysis may not be sufficiently powered to detect an increased bleeding risk in this lower threshold arm of less than 50% (Estcourt *et al*, 2011).

The use of other transfusion thresholds, such as platelet mass, absolute immature platelet numbers and immature

Guideline

platelet fraction, have been considered as alternatives to a platelet count threshold but there have been no randomised studies in adult patients. (*Eldor et al, 1982; Briggs et al, 2006;* Gerday *et al, 2009; Zisk et al, 2013*).

### What platelet transfusion dose should be used?

A systematic review identified six RCTs that compared different platelet transfusion doses (Estcourt et al, 2015). Four of these studies assessed clinically significant bleeding as an outcome measure (usually defined as WHO grade 2 or above). There was no evidence of a difference in the risk of bleeding between low dose  $(1.1 \times 10^{11}/m^2)$  and standard dose  $(2.2 \times 10^{11}/m^2)$  and between standard dose and high dose platelet transfusions  $(4.4 \times 10^{11}/m^2)$ . Low dose transfusions decreased the total amount of platelets patients received, but at the expense of a higher number of transfusions episodes. Increasing the dose from a standard to a high dose did not increase the transfusion interval (median 5 days for both regimens). The mean UK adult platelet dose (one unit of platelets) is around  $3 \times 10^{11}$  platelets, equivalent to between the low and standard doses defined above, although there is evidence of considerable variation (Pietersz et al, 2012).

### Additional risk factors for bleeding

Numerous clinical factors have been reported to be associated with an increased risk of bleeding (Table III). However, the majority of these postulated risk factors are based on low-level evidence, such as expert opinion or retrospective analysis of patient databases. Inflammation has been shown to be associated with an increased risk of bleeding in mice (Goerge *et al*, 2008). Although studies have differed in their opinion of whether fever increases the risk of bleeding in humans (Table III), currently, the platelet transfusion threshold is commonly raised to  $20 \times 10^9$ /l when patients have an infection or fever (Estcourt *et al*, 2012a). Further studies are required to clearly identify which factors should prompt an increase in the transfusion threshold, and what this threshold should be.

|                                                          |      | proportion of patients who bled<br>versus prophylactic) (%) | prophy | er of patients who needed treatment with<br>vlactic platelet transfusions to prevent 1 patient<br>leeding within a 30-day period |
|----------------------------------------------------------|------|-------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|
| Patient group                                            |      | 95% CI                                                      | n      | 95% CI                                                                                                                           |
| All patients                                             | 8.4  | 0.3-16.5                                                    | 12     | 6–333                                                                                                                            |
| Autologous stem cell<br>transplant patients              | 2.3  | -7.2-11.9                                                   | 43     | Not estimable as no significant difference between treatment arms                                                                |
| Chemotherapy/allogeneic<br>stem cell transplant patients | 20.0 | 5.6–34.5                                                    | 5      | 3–18                                                                                                                             |

Table II. Data from (Stanworth et al, 2013a) and (Stanworth et al, 2014).

95% CI, 95% confidence interval.

Table III. Examples of bleeding risks in haematology patients noted in both randomised controlled trials (RCTs) and observational studies. (Data from RCTs on a specific bleeding risk have been placed before data from retrospective studies.) Table updated from original (Estcourt *et al*, 2011).

| Haemorrhagic risk            | Study                         | Type of study                         | Patients in study $(n)$ | Analysis | OR/HR/RR/P value                 | Statistically<br>significant |
|------------------------------|-------------------------------|---------------------------------------|-------------------------|----------|----------------------------------|------------------------------|
|                              | Stanworth <i>et al</i> (2015) | RCT                                   | 589                     | M        | HR 1.33 (95% CI 1.10–1.61)       | A                            |
| female sex                   | Kim <i>et al</i> (2004)       | Retrospective, observational          | 792                     | W        | RR 5-23 (95% CI 2-13-            | , Y                          |
|                              |                               | ····· · · · · · · · · · · · · · · · · | 1                       | 1        | 12.89)                           | I                            |
|                              | De la Serna et al (2008)      | Prospective, observational            | 732                     | М        | P = 0.16                         | Z                            |
| Baseline characteristics -   | Nevo et al (2007)             | Retrospective, observational          | 480                     | М        | OR 1.84 (95% CI 1.05–3.22)       | Y                            |
| poor risk disease            |                               |                                       |                         |          |                                  |                              |
| Baseline characteristics -   | Kim <i>et al</i> (2004)       | Retrospective, observational          | 792                     | М        | RR 4.06 (95% CI 1.63–            | Υ                            |
| APL vs. other acute          |                               |                                       |                         |          | 10.13)                           |                              |
| leukaemia                    | Chen <i>et al</i> (2009)      | Retrospective, observational          | 790                     | U        | P = 0.001                        | Υ                            |
| Treatment – BM HSCT          | Friedmann et al (2002)        | Retrospective, observational          | 2942                    | М        | OR 1.32 (95% CI 1.22–1.43)       | Υ                            |
| within 100 days              |                               |                                       |                         |          |                                  |                              |
| Treatment – blood & BM       | Lawrence et al (2001)         | Prospective, interventional           | 141                     | М        | r = 0.174 (major                 | Υ                            |
| HSCT                         |                               |                                       |                         |          | haemorrhage)                     |                              |
|                              |                               |                                       |                         |          | $P < 0.001 \ r = 0.054$ (minor   |                              |
|                              |                               |                                       |                         |          | haemorrhage)                     |                              |
|                              |                               |                                       |                         |          | P < 0.001                        |                              |
| Treatment – allogeneic       | Stanworth et al (2015)        | RCT                                   | 589                     | М        | HR 1.43 (95% CI 1.19–1.72)       | Υ                            |
| HSCT or chemotherapy vs.     |                               |                                       |                         |          |                                  |                              |
| autologous HSCT              |                               |                                       |                         |          |                                  |                              |
| Treatment – HSCT             | Zumberg et al (2002)          | RCT                                   | 159                     | U        | OR 2.8 (95% CI 1.1–7.7)          | Υ                            |
| (Allogeneic vs. Autologous)  | Nevo et al (2007)             | Retrospective, observational          | 480                     | М        | OR 2.29 (95% CI 1.11–4.77)       | Υ                            |
|                              | Gerber et al (2008)           | Retrospective, observational          | 1514                    | Μ        | OR 2.17 (95% CI 1.56–3.03)       | Υ                            |
| Infection – bacteraemia      | Friedmann et al (2002)        | Retrospective, observational          | 2942                    | М        | OR 1.01 (95% CI 0.81–1.26)       | Z                            |
| Infection – clinical         | Webert et al (2006)           | Retrospective analysis of RCT*        | 255                     | М        | RR 1.98 (95% CI 1.0–3.92)        | Υ                            |
| Infection – systemic         | Najima <i>et al</i> (2009)    | Retrospective, observational          | 622                     | Μ        | HR 1.52 (95% CI 0.57–4.03)       | Z                            |
| Infection – sepsis           | Lawrence et al (2001)         | Prospective, interventional           | 141                     | Μ        | $r = 0.024; P = 0.036^{\dagger}$ | Υ                            |
| Fever ≥38°C                  | Stanworth et al (2015)        | RCT                                   | 469                     | Μ        | HR 1.7 (95% CI 1.3–2.4)          | Υ                            |
| Fever – per 1°C rise in temp | Friedmann <i>et al</i> (2002) | Retrospective, observational          | 2942                    | Μ        | OR 1.02 (95% CI 0.94–1.1)        | Z                            |
| Fever – not specified        | Lawrence et al (2001)         | Prospective, Interventional           | 141                     | Μ        | $r = 0.072; P < 0.001^{\dagger}$ | Υ                            |
| Fever >38.5°C                | Webert et al (2006)           | Retrospective analysis of RCT*        | 255                     | Μ        | RR 3.95 (95% CI 1.90–8.20)       | Υ                            |
| Fever associated with WHO    |                               |                                       |                         |          | RR 1.62 (95% CI 0.44–5.91)       | Z                            |
| grade 3&4 haemorrhage        |                               |                                       |                         |          |                                  |                              |
| only                         |                               |                                       |                         |          |                                  |                              |
| Medication – semi-synthetic  | Lawrence et al (2001)         | Prospective, Interventional           | 141                     | М        | r = 0.032; P = 0.014†            | Υ                            |
| penicillin                   | Friedmann et al (2002)        | Retrospective, Observational          | 2942                    | Μ        | OR 0.94 (95% CI 0.80–1.09)       | Z                            |

# Guideline

| PatientsType of studypatients1)Retrospective analysis of RCT*255MR0R/HR/RVP value1)Retrospective, Interventional141M $P < 0.001$ $P < 0.001$ 1)Prospective, Interventional141M $P < 0.001$ $P < 0.001$ 1)Prospective, Observational2942M $P < 0.001$ $P < 0.001$ 20)Retrospective, Observational1514M $P < 0.001$ $P < 0.001$ 20)Retrospective, Observational1514M $P < 0.001$ $P < 0.001$ 20)Retrospective, Observational2942M $P < 0.001$ $P < 0.001$ 20)Retrospective, Observational141M $P < 0.01$ $P < 0.01$ 20)Retrospective, Observational2942M $P < 0.01$ $P < 0.01$ 20)Retrospective, Observational141M $P < 0.01$ $P < 0.01$ 20)Retrospective, Observational2942M $P < 0.01$ $P < 0.01$ 20)Retrospective, Observational1514 $P < 0.01$ $P < 0.01$ 20)Retrospective, Observational1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                         |                                                            |                          |          |                                          |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|--------------------------|----------|------------------------------------------|------------------------------|
| Webert et al (2000)         Retrospective analysis of RCT*         255         M         RR 0-59 (95% CI 0.39-0.9)           Zumberg et al (2001)         Frospective, Interventional         141         M $r = 0.064$ (major           Lavrence et al (2001)         Frospective, Interventional         141         M $r = 0.064$ (major           Friedmann et al (2002)         Retrospective, Observational         2942         M         008 31 (95% CI 0.93-0.1)           Friedmann et al (2002)         Retrospective, Observational         2942         M         008 31 (95% CI 0.94-13)           Friedmann et al (2002)         Retrospective, Observational         2942         M         0.81 (169% CI 1.0-1.92)           Friedmann et al (2002)         Retrospective, Observational         2942         M         0.81 (169% CI 1.0-1.92)           Friedmann et al (2002)         Retrospective, Observational         2942         M         0.81 (169% CI 1.0-1.92)           Inventor         Protocol         Retrospective, Observational         2942         M         0.81 (169% CI 1.0-1.92)           Inventor         Retrospective, Observational         2942         M         0.81 (160 (1-10-1.92)           Inventor         Retrospective, Observational         2942         M         0.81 (169% CI 1.0-3-2)                                                                                                                                                                                                                                                   | Haemorrhagic risk                                     | Study                                                   | Type of study                                              | Patients<br>in study (n) | Analysis | OR/HR/RR/P value                         | Statistically<br>significant |
| Zunberg et al (2002)         RCT         19         M $P < 0.001$ Lawrence et al (2001)         Prospective, Interventional         141         M $P < 0.001$ Lawrence et al (2002)         Prospective, Interventional         134         M $P < 0.001$ Friedmann et al (2002)         Retrospective, Observational         2942         M         08 10 95% C1 0.69-113)           Friedmann et al (2002)         Retrospective, Observational         2942         M         08 10 95% C1 0.69-113)           Friedmann et al (2002)         Retrospective, Observational         2942         M         08 10 95% C1 0.69-113)           Friedmann et al (2002)         Retrospective, Observational         2942         M         08 10 95% C1 0.69-113)           Insertine et al (2003)         Prospective, Intervational         141         M $r = -0.101$ (mistrificition           Insertine et al (2003)         Retrospective, Observational         2942         M         08 196 (95% C1 0.99-10)           Insertine et al (2003)         Retrospective, Observational         2942         M         07 10.1902)           Insertine et al (2003)         Retrospective, Observational         2942         M         07 14 (95% C1 0.99-10)           Insertine et al (2003)         Retrospecti                                                                                                                                                                                                                                                                                      | Medication – anti-fungal                              | Webert et al (2006)                                     | Retrospective analysis of RCT*                             | 255                      | W        | RR 0.59 (95% CI 0.39–0.9)                | γ                            |
| Laverace <i>et al</i> (2001)         Prospective, Interventional         141         M $r = 0.064$ (major           Envence <i>i</i> (2003)         Percopertive, Observational         2942         M         0.80.97 (95%, CI 0.64)-113)           Friedmann <i>et al</i> (2003)         Retrospective, Observational         2942         M         0.80.97 (95%, CI 0.64)-113)           Friedmann <i>et al</i> (2003)         Retrospective, Observational         2942         M         0.80.94 (95%, CI 0.64)-113)           Friedmann <i>et al</i> (2003)         Retrospective, Observational         2942         M         0.81.95%, CI 0.64)-113, 0.023           Friedmann <i>et al</i> (2003)         Retrospective, Observational         141         M <i>r</i> = -0.101 (major           Lawrence <i>et al</i> (2001)         Prospective, Interventional         141         M <i>r</i> = -0.101 (major           Lawrence         M         0.80.94 (95%, CI 0.69)-10, 0.02, 0.02         0.02, 0.03         0.02, 0.03           Lawrence         M         0.80.94 (95%, CI 0.92)-10, 0.02, 0.04         0.02, 0.04         0.02, 0.04           Lawrenchage         M         N <i>r</i> = -0.101 (major         0.02, 0.04           Lawrenchage         M         N <i>r</i> = -0.101 (major         0.02, 0.04           Lawrenchage         N                                                                                                                                                                                                                                   | medication–amphotericin                               | Zumberg et al (2002)                                    | RCT                                                        | 159                      | Μ        | P < 0.0001                               | Υ                            |
| Indemondance       Intermediation       Intermediation       Intermediation         Friedmann et al (2002)       Retrospective, Observational       2942       M       02.6 + 0401         Friedmann et al (2002)       Retrospective, Observational       1514       M       02.8 + 0401         Friedmann et al (2002)       Retrospective, Observational       2942       M       02.8 + 0401         Friedmann et al (2002)       Retrospective, Observational       2942       M       08.1 + 0499% CI 148-1131         Friedmann et al (2002)       Retrospective, Observational       2942       M       08.1 + 0499% CI 146-1923         Lawrence et al (2001)       Prospective, Interentional       141       M $r = -0.101$ (major         Inversion       2942       M       08.1 + 0499% CI 146-1923       01.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 | ······ <b>I</b> ····· · · · · · · · · · · · · · · · · | Lawrence <i>et al</i> (2001)                            | Prospective, Interventional                                | 141                      | М        | r = 0.064 (major                         | Υ                            |
| $r_{c} = 0.001$ $r_{c} = 0.011$ Friedmann et al (2002)       Retrospective, Observational       2942       M       087 (95% G1 684-113)         Friedmann et al (2003)       Retrospective, Observational       1514       M       08.1 (95% G1 684-113)         Friedmann et al (2002)       Retrospective, Observational       2942       M       08.1 (95% G1 684-113)         Friedmann et al (2002)       Retrospective, Observational       2942       M       08.1 (95% G1 649-95)         Friedmann et al (2001)       Prospective, Observational       2942       M       08.1 (95% G1 64-95)         Lawrence et al (2001)       Prospective, Observational       2942       M       08.1 (64 (95% G1 69-95)         Nobsective       Intervational       2942       M       08.1 (69-92)       001         Intervational       2942       M       7 = -0.101 (major       001-192)         Retrospective, Intervational       2942       M       7 = -0.001       7 = -0.001         Retrospective, Intervational       2942       M       7 = -0.011 (major       10-0.01-0.01         Retrospective, Observational       2942       M       7 = -0.01 (major       10-0.01         Retrospective, Observational       2942       M       08.114-0.69       096                                                                                                                                                                                                                                                                                                                                |                                                       | ~                                                       |                                                            |                          |          | haemorrhage)                             |                              |
| riedmann et al (2002)       Retrospective, Observational       2942       M       08.097 95% (C1 64-113)         Friedmann et al (2002)       Retrospective, Observational       15.14       M       08.047 95% (C1 64-113)         Friedmann et al (2002)       Retrospective, Observational       15.14       M       08.047 95% (C1 64-113)         Friedmann et al (2002)       Retrospective, Observational       2942       M       08.049 95% (C1 640-1-92)         Friedmann et al (2002)       Retrospective, Observational       2942       M       08.164 95% (C1 140-1-92)         Lavrence et al (2001)       Prospective, Interventional       141       M $r = -0.101$ (nnjor         Lavrence et al (2005)       Retrospective, Observational       2942       M       08.164 95% (C1 140-192)         Nebert et al (2006)       Fretospective, Observational       2942       M $r = -0.101$ (nnjor         P < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                         |                                                            |                          |          | P < 0.001                                |                              |
| Interindment     Interindment     Interindment       Friedmann et al (2002)     Retrospective, Observational     2942     M     OR 97 (95% CI 169-5)       Friedmann et al (2002)     Retrospective, Observational     2942     M     OR 94 (95% CI 169-5)       Friedmann et al (2002)     Retrospective, Observational     2942     M     OR 94 (95% CI 140-192)       Friedmann et al (2002)     Retrospective, Observational     2942     M     OR 164 (95% CI 140-192)       Iawrence et al (2001)     Prospective, Observational     2942     M     OR 164 (95% CI 140-192)       Iawrence et al (2001)     Prospective, Interventional     141     M $r = -0.101$ (major       Iawrence et al (2003)     Retrospective, Observational     2942     M     OR 164 (95% CI 109-192)       Nebert et al (2005)     Retrospective, Observational     2942     M $r = -0.101$ (major       Priodmann et al (2003)     Retrospective, Observational     2942     M $r = -0.141$ (minor       Priodmann et al (2003)     Retrospective, Observational     2942     M $r = -0.141$ (minor       Priodmann et al (2003)     Retrospective, Observational     2942     M     OR 144 (95% CI 109-192)       Priodmann et al (2003)     Retrospective, Observational     2942     M     OR 144 (95% CI 109-192)       Priodmann et                                                                                                                                                                                                                                                                               |                                                       |                                                         |                                                            |                          |          | r = 0.114 (minor                         |                              |
| Friedmann et al (2002)         Retrospective, Observational         2942         M         OF 0.001           Friedmann et al (2002)         Retrospective, Observational         1514         M         08.3.1 (95% CI 0.69-1.13)           Friedmann et al (2002)         Retrospective, Observational         1544         M         08.3.1 (95% CI 0.69-1.13)           Friedmann et al (2002)         Retrospective, Observational         2942         M         08.1.64 (95% CI 0.69-1.102)           Friedmann et al (2002)         Retrospective, Observational         2942         M         08.1.64 (95% CI 0.49-1.192)           Iawrence et al (2001)         Prospective, Interventional         141         M $r = -0.101$ (major           Iawrence et al (2002)         Retrospective, Observational         2942         M         08.1.64 (95% CI 0.49-1.92)           Iawrence et al (2006)         Precopective, Interventional         141         M $r = -0.141$ (mior           Priedmann et al (2005)         Retrospective, Observational         2942         M         08.1.0.99-0.001           Priedmann et al (2002)         Retrospective, Observational         2942         M         08.1.0.99-0.001           Priedmann et al (2003)         Retrospective, Observational         2942         M         08.1.0.99-0.001           Prie                                                                                                                                                                                                                               |                                                       |                                                         |                                                            |                          |          | haemorrhage)<br>n < 0.001                |                              |
| Control         Retrospective, Observational         2.74         M         OR 31 (95% CI 10.65)           Friedmann et al (2002)         Retrospective, Observational         574         M         OR 31 (95% CI 10.65)           Friedmann et al (2002)         Retrospective, Observational         2942         M         OR 31 (95% CI 10.65-1)           Friedmann et al (2002)         Retrospective, Observational         2942         M         OR 164 (95% CI 10.65-1)           Lawrence et al (2001)         Prospective, Interventional         141         M $r = -0.101$ (major           Nebert et al (2006)         Retrospective, Observational         2942         M         OR 1.64 (95% CI 10.65-1)           Nebert et al (2006)         Retrospective, Observational         2942         M         OR 1.64 (95% CI 10.69-1)           Priedmann et al (2002)         Retrospective, Observational         2942         M         OR 1.46 (not transfirsed)           Priedmann et al (2002)         Retrospective, Observational         2942         M         OR 1.4 (95% CI 10.69-1)           Priedmann et al (2002)         Retrospective, Observational         2942         M         OR 1.4 (95% CI 10.69-1)           Priedmann et al (2003)         Retrospective, Observational         2942         M         OR 1.4 (95% CI 10.69-1)           <                                                                                                                                                                                                                   |                                                       | Eriadmann <i>at al</i> (2002)                           | Detrochective Observational                                | 047                      | М        | P < 0.001<br>OD 0.07 (050% CT 0.84 1.13) | Z                            |
| Friedmann et al (2002)Retrospective, Observational242MOR 0.94 (95% CI 10-9-2)Friedmann et al (2002)Retrospective, Observational2942MOR 0.94 (95% CI 10-9-2)Friedmann et al (2002)Retrospective, Observational141M $r = -0.101$ (majorLawrence et al (2001)Prospective, Interventional141M $r = -0.101$ (majorLawrence et al (2001)Prospective, Interventional141M $r = -0.101$ (majorLawrence et al (2001)Prospective, Interventional141M $r = -0.101$ (majorNebert et al (2005)Retrospective, Observational2942MOR 1.49 (95% CI. 0.93-Priedmann et al (2002)Retrospective, Observational2942MOR 1.44 (95% CI. 0.93-Priedmann et al (2002)Retrospective, Observational159MOR 1.44 (95% CI. 0.69-Priedmann et al (2003)Retrospective, Observational1514MOR 2.4 (95% CI. 0.69-Priedmann et al (2002)Retrospective, Observational1514MOR 2.4 (95% CI. 0.69-Priedmann et al (2003)Retrospective, Observational1514MP< 0                                                                                                                                                                                                                                                                                                                                                                        | Modication anticocambanto                             | $C_{a} = \frac{1}{2} \left( \frac{1}{2000} \right)$     | Democratics Observational                                  | 1514                     | M        | OD 3 1 (050% OI 1 0 56)                  |                              |
| Friedmann er al (2002)Retrospective, Observational2942M10.12)Heidmann er al (2002)Retrospective, Observational1941M $r = -0.101$ (majorLawrence er al (2001)Prospective, Interventional141M $r = -0.101$ (majorNobert er al (2006)Retrospective, Observational2942M0.01.64 (95% CI 1-09-192)Friedmann er al (2006)Retrospective, observational2942M0.01.14 (95% CI 1-093-0.001)Friedmann er al (2002)Retrospective, Observational2942M0.01.14 (95% CL 0.093-0.968)Friedmann er al (2002)Retrospective, Observational2942M0.01.14 (95% CL 0.693-0.968)Zumberg er al (2002)Retrospective, Observational1514M0.82.4 (95% CL 0.693-0.968)Zumberg er al (2003)Retrospective, Observational1514M0.82.4 (95% CI 0.453-0.968)Scherer er al (2003)Retrospective, Observational1514M0.82.4 (95% CI 0.453-0.968)Subirna er al (2003)Retrospective, Observational1514M0.82.4 (95% CI 0.453-0.968)Subirna er al (2003)Retrospective, Observational1514M0.82.4 (95% CI 1.945-0.968)Subirna er al (2003)Retrospective, Obse                                                                                                                                                                                                                                                                                                                                               | INTEGLICATION - ALIFICOAGULATIUS                      | Gettoet et $ut$ (2000)<br>Friedmann <i>et al</i> (2002) | Retrospective Observational<br>Retrospective Observational | 41C1                     | W        | OR 0.94 (95% CI 0.09-                    | - 2                          |
| Friedmann et al (2002)Retrospective, Observational2942MOR 1-64 (95% CI 1-40-1-92)Lawrence et al (2001)Prospective, Interventional141M $r = -0.101$ (majorLawrence et al (2001)Prospective, Interventional141M $r = -0.101$ (majorNebert et al (2006)Retrospective analysis of RCT*255MRemorthage)PProcessonProcesson $P < 0.001$ $r = -0.144$ (minorInternationRetrospective, Observational2942MRR 0.96 (95% CI. 0-93InternationRetrospective, Observational2942MOR 1-14 (95% CI. 0-93InternationRetrospective, Observational2942MOR 1-14 (95% CI. 0-93InternationRetrospective, Observational159MOR 1-14 (95% CI. 0-93InternationRetrospective, Observational151MP < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                         |                                                            | 1                        |          | 10.12)                                   | •                            |
| Lawrence <i>et al</i> (2001)Prospective, Interventional141M $r = -0.101$ (major<br>haemorthage)Lawrence <i>et al</i> (2001)Prospective, Interventional141M $r = -0.101$ (major<br>haemorthage)Webert <i>et al</i> (2006)Retrospective analysis of RCT*255M $Reconthage)$<br>$P < 0.001$ Friedmann <i>et al</i> (2002)Retrospective, Observational2942M $RR 0.96 (95% C.I. 0.93)$ -<br>$0.98)MFriedmann et al (2002)Retrospective, Observational2942MRR 1.14 (95% C.I. 0.93)-0.98)MRetrospective, Observational2942MRR 1.14 (95% C.I. 0.93)-0.98)MRetrospective, Observational1519MP < 0.001Retrospective, Observational1514MR (1.41 (95% C.I. 0.93)-0.98)Schber et al (2009)Retrospective, Observational1514MR (1.41 (95% C.I. 0.93)Schber et al (2009)Retrospective, Observational1514MR (2.01 (9-1)^{-1.97})Subberge et al (2009)Retrospective, Observational1514MR (2.093)Retrospective, Observational1514MR (2.003)Retrospective, Observational1514MR (2.003)Retrospective, Observational1514MR (2.003)Retrospective, Observational1514MR (2.003)Retrospective, Observational152MR (2.003)^{-1.950}Submerge et al (2009)Retrospective, Observational152NRetrospective, Obse$                                                                                                                                                                                                                                                                                                                                                                                                                           | Laboratory parameters -                               | Friedmann <i>et al</i> (2002)                           | Retrospective, Observational                               | 2942                     | М        | OR 1.64 (95% CI 1.40–1.92)               | Υ                            |
| Lawrence et al (2001)Prospective, Interventional141M $r = -0.101$ (majorLawrence et al (2001)Prospective, Interventional141M $r = -0.144$ (milorRemorrhage) $P < 0.001$ $r = -0.144$ (milorMebert et al (2006)Retrospective analysis of RCT*255M $R = 0.044$ (milorFriedmann et al (2002)Retrospective, Observational2942M $R = 0.0601$ Friedmann et al (2002)Retrospective, Observational2942M $R = 0.96 (95% C.I. 0.99)$ Jamberg et al (2002)Retrospective, Observational2942M $O = 0.011$ Sumberg et al (2002)Retrospective, Observational159 $O = 0.099 (95% C.I. 0.89)$ Jamberg et al (2003)RCT159M $P < 0.049$ Camberg et al (2003)Retrospective, Observational1514M $O = 0.039 (95\% C.I. 0.45)$ Jamberg et al (2003)Retrospective, Observational1514M $O = 0.039 (95\% C.I. 0.45)$ Jamberg et al (2003)Retrospective, Observational1514M $O = 0.03 (95\% C.I. 0.45)$ Jamberg et al (2003)Retrospective, Observational1514M $O = 0.03 (95\% C.I. 0.45)$ Jamberg et al (2003)Retrospective, Observational1514M $O = 0.03 (95\% C.I. 0.45)$ Jamberg et al (2003)Retrospective, Observational1514M $O = 0.03 (95\% C.I. 0.45)$ Jamberg et al (2003)Retrospective, Observational1514M $O = 0.205\% C.I. 0.45)$ Jamberg et al (2003)Retrospective, Observational<                                                                                                                                                                                                                                                                                                                                        | Uraemia (urea<br>>17.9 mmol/l)                        |                                                         |                                                            |                          |          |                                          |                              |
| Mathematical constraintsMathematical constraintsMether et al (2006)Retrospective analysis of RCT*255MRemorthage)P < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Laboratory parameters –                               | Lawrence et al (2001)                                   | Prospective, Interventional                                | 141                      | Μ        | r = -0.101 (major                        | Υ                            |
| Nebert et al (2006)Retrospective analysis of RCT*255M $P < 6.001$ r = -0.144 (minor<br>haemorthage)r = -0.144 (minor<br>haemorthage)r = -0.141r = -0.144 (minor<br>haemorthage)r = -0.141r = -0.144 (minor<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nlatelet count                                        |                                                         | <b>J</b>                                                   |                          |          | haemorrhage)                             |                              |
| Nebert et al (2006)       Retrospective analysis of RCT*       255       M       R 0.96 (95% C.I. 0.93-<br>P < 0.001         I       Friedmann et al (2002)       Retrospective, Observational       2942       M       RR 0.96 (95% C.I. 0.89-<br>0.98)         I       Friedmann et al (2002)       Retrospective, Observational       2942       M       OR 1.14 (95% C.I. 0.89-<br>0.98)         I       Entospective, Observational       2942       M       OR 1.14 (95% C.I. 0.89-<br>1.46) (not transfused)         I       Entospective, Observational       2942       M       OR 1.14 (95% C.I. 0.89-<br>1.46) (not transfused)         I       Entospective, Observational       159       M       P < 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | practice count                                        |                                                         |                                                            |                          |          | D < 0.001                                |                              |
| Nebert et al (2006)       Retrospective analysis of RCT*       255       M       RR 0-6001       P < 0.001 $P$ P       0.098       P < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                         |                                                            |                          |          | $\frac{1}{2}$                            |                              |
| Webert et al (2006)Retrospective analysis of RCT*255MR 0.96 (95% C.I. 0.93-<br>0.98)IFriedmann et al (2002)Retrospective, Observational2942MR 1.46 (not transfixed)I0.980.980.981.46 (not transfixed)IZumberg et al (2002)RCT159M0.81.14 (95% C.I. 0.89-<br>1.46) (not transfixed)IEggi-Torres et al (2002)RCT159MP < 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                         |                                                            |                          |          | LOLIMIT) FFI-O (                         |                              |
| Webert <i>et al</i> (2006)         Retrospective analysis of RCT*         255         M         RR 0.96 (95% C.I. 0.93-<br>0.98)           I         Friedmann <i>et al</i> (2002)         Retrospective, Observational         2942         M         OR 1.14 (95% C.I. 0.89-<br>1.46) (not transfused)           I         Emberg <i>et al</i> (2002)         RCT         1.46) (not transfused)         OR 0.98 (95% C.I. 0.69-<br>1.39) (transfused)           I         Emberg <i>et al</i> (2002)         RCT         159         M         P < 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                         |                                                            |                          |          | P < 0.001                                |                              |
| Image: Friedmann et al (2002)       Retrospective, Observational $2942$ M       OR 1:14 (95% C.I. 0:89-146) (not transfused)         1       Image: Friedmann et al (2002)       Retrospective, Observational $2942$ M       OR 1:14 (95% C.I. 0:89-146) (not transfused)         1       Image: Friedmann et al (2002)       RCT       159       N       OR 0:98 (95% C.I. 0:69-13) (not transfused)         2       Zumberg et al (2002)       RCT       159       M       OR 0:98 (95% C.I. 0:69-13) (not transfused)         1       Beggi-Torres et al (2002)       RCT       159       M       P < 0:049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratory parameters-for                             | Webert et al (2006)                                     | Retrospective analysis of RCT*                             | 255                      | Μ        | RR 0.96 (95% C.I. 0.93–                  | Υ                            |
| Image: Triedmann et al (2002)Retrospective, Observational2942MOR 1.14 (95% C.I. 0.89-<br>1.46) (not transfused)Image: Triedmann et al (2002)RcT1.46) (not transfused)0.8 0.98 (95% C.I. 0.69-<br>1.39) (transfused)Zumberg et al (2002)RCT159M $P < 0.049$ Bleggi-Torres et al (2002)Retrospective, Observational180U0.8 0.95% C.I. 0.69-<br>1.39) (transfused)Gerber et al (2003)Retrospective, Observational1514M $P < 0.049$ Najima et al (2003)Retrospective, Observational1514M0.8 2.4 (95% CI (0.45-<br>1.62))Carber et al (2003)Retrospective, Observational1514M0.8 2.4 (95% CI 1.8-3:3)Sumberg et al (2002)RCT159M $P < 0.033$ Carber et al (2003)Retrospective, Observational1514M0.8 2.2 (95% CI 1.4-3:6)Najima et al (2003)Retrospective, Observational1514M0.8 2.3 (95% CI 1.4-3:6)Najima et al (2003)Retrospective, Observational1514M0.8 2.3 (95% CI 1.4-3:6)Najima et al (2003)Retrospective, Observational622MHR 2.63 (95% CI 1.4-3:6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | every $1 \times 10^9$ /l increase in                  |                                                         |                                                            |                          |          | 0.98)                                    |                              |
| Image: Interformann et al (2002)       Ketrospective, Observational $2942$ M       O.K. 1.4 (95% C.I. 0.89-         1       1.46) (not transfused)       0.8 0.98 (95% C.I. 0.69-       1.39) (transfused)         2umberg et al (2002)       RCT       159       M $P < 0.049$ Sleggi-Torres et al (2002)       Retrospective, Observational       180       U       0.8 0.95% C.I. 0.69-         Bleggi-Torres et al (2002)       Retrospective, Observational       180       U       0.8 0.95% C.I (0.45-         1.62)       Retrospective, Observational       1514       M       0.8 0.95% C.I (0.45-         1.62)       Cerber et al (2009)       Retrospective, Observational       1514       M       0.8 2.4 (95% CI 1.8-3.3)         Najima et al (2002)       RCT       159       M       P < 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | platelet count                                        |                                                         |                                                            |                          | ;        |                                          | ;                            |
| II       1-46) (not transitused) $II$ 1-46) (not transitused) $Zumberg et al (2002)$ $RCT$ $Zumberg et al (2002)$ $RCT$ $II$ 159 $II$ $III$ $III$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Laboratory parameters –                               | Friedmann <i>et al</i> (2002)                           | Retrospective, Observational                               | 2942                     | Μ        | UK 1.14 (95% C.I. 0.89–                  | Z                            |
| Zumberg et al (2002)       RCT       159       M       0R 0-98 (95% C.I. 0.69-         Zumberg et al (2002)       RCT       159       M $P < 0.049$ Bleggi-Torres et al (2002)       Retrospective, Observational       180       U       0R 0.86 (95% CI (0.45-         Gerber et al (2008)       Retrospective, Observational       1514       M       0R 2.4 (95% CI (1.8-3:3)         Najima et al (2009)       Retrospective, Observational       1514       M       OR 2.4 (95% CI 1.8-3:3)         Zumberg et al (2002)       RCT       159       M       P < 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Platelet count $0 - 9 \times 10^{7/1}$                |                                                         |                                                            |                          |          | 1.46) (not transfused)                   |                              |
| Zumberg et al (2002)       RCT       159       M $1:39$ ) (transfused)         Bleggi-Torres et al (2002)       Retrospective, Observational       159       M $P < 0.049$ Bleggi-Torres et al (2002)       Retrospective, Observational       180       U       OR $0:86$ (95% CI ( $0.45^{-1}$ )         Gerber et al (2008)       Retrospective, Observational       1514       M       OR $2:4$ (95% CI $1:8-3:3$ )         Najima et al (2009)       Retrospective, Observational       1514       M       OR $2:4$ ( $95\%$ CI $1:01^{-1}.97$ )         Zumberg et al (2002)       RCT       159       M $P < 0.033$ Gerber et al (2008)       Retrospective, Observational       1514       M       OR $2:4$ ( $95\%$ CI $1:01^{-1}.97$ )         Najima et al (2003)       Retrospective, Observational       622       M       P < $0.033$ Najima et al (2009)       Retrospective, Observational       1514       M       OR $2:2$ ( $95\%$ CI $1:4^{-3}.6$ )         Najima et al (2009)       Retrospective, Observational       622       M       HR $2:63$ ( $95\%$ CI $0.77^{-9.00}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vs. $40-49 \times 10^{9}/l$                           |                                                         |                                                            |                          |          | OR 0.98 (95% C.I. 0.69–                  |                              |
| Zumberg et al (2002)       RCT       159       M $P < 0.049$ Bleggi-Torres et al (2002)       Retrospective, Observational       180       U       OR 0.86 (95% CI (0.45-1))         Gerber et al (2008)       Retrospective, Observational       180       U       OR 0.4 (95% CI (0.45-1))         Najima et al (2009)       Retrospective, Observational       1514       M       OR 2.4 (95% CI 1.8-3.3)         Zumberg et al (2009)       Retrospective, Observational       1514       M       P < 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                         |                                                            |                          |          | 1.39) (transfused)                       |                              |
| Bleggi-Torres et al (2002)         Retrospective, Observational         180         U         OR $0.86$ (95% CI (0.45-<br>1.62)           Gerber et al (2008)         Retrospective, Observational         1514         M         0R $2.4$ (95% CI $1.8-3.3$ )           Najima et al (2009)         Retrospective, Observational         1514         M         OR $2.4$ (95% CI $1.8-3.3$ )           Zumberg et al (2009)         Retrospective, Observational         622         M         HR $1.41$ (95% CI $1.01-1.97$ )           Zumberg et al (2002)         RCT         159         M $P < 0.033$ Gerber et al (2008)         Retrospective, Observational         1514         M         OR $2.2$ (95% CI $1.4-3.6$ )           Najima et al (2009)         Retrospective, Observational         1514         M         OR $2.2$ (95% CI $1.4-3.6$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other co-morbidities-acute                            | Zumberg et al (2002)                                    | RCT                                                        | 159                      | М        | P < 0.049                                | Υ                            |
| I-62)       I-62)         Gerber et al (2008)       Retrospective, Observational       1514       M       OR $2\cdot 4$ (95% CI $1\cdot 8-3\cdot 3$ )         Najima et al (2009)       Retrospective, Observational       622       M       HR $1\cdot 41$ (95% CI $1\cdot 0-1\cdot 97$ )         Zumberg et al (2002)       RCT       159       M       P < $0\cdot 0.33$ Gerber et al (2008)       Retrospective, Observational       1514       M       OR $2\cdot 2$ (95% CI $1\cdot 4-3\cdot 6$ )         Najima et al (2009)       Retrospective, Observational       1514       M       OR $2\cdot 2$ (95% CI $1\cdot 4-3\cdot 6$ )         Najima et al (2009)       Retrospective, Observational       622       M       HR $2\cdot 63$ (95% CI $0\cdot 77-9\cdot 00$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | graft vs host disease                                 | Bleggi-Torres et al (2002)                              | Retrospective, Observational                               | 180                      | U        | OR 0.86 (95% CI (0.45–                   | Z                            |
| Gerber et al (2008)         Retrospective, Observational         1514         M         OR $2\cdot4$ (95% CI $1\cdot8-3\cdot3$ )           Najima et al (2009)         Retrospective, Observational         622         M         HR $1\cdot41$ (95% CI $1\cdot0-1\cdot97$ )           Zumberg et al (2002)         RCT         159         M $P < 0.033$ Gerber et al (2008)         Retrospective, Observational         1514         M $P < 0.033$ Najima et al (2009)         Retrospective, Observational         1514         M         OR $2\cdot2$ (95% CI $1\cdot4-3\cdot6$ )           Najima et al (2009)         Retrospective, Observational         622         M         HR $2\cdot63$ (95% CI $0.77-9\cdot00$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                         |                                                            |                          |          | 1.62)                                    |                              |
| Najima <i>et al</i> (2009)         Retrospective, Observational         622         M         HR 1.41 (95% CI 1.01–1.97)           Zumberg <i>et al</i> (2002)         RCT         159         M $P < 0.033$ Gerber <i>et al</i> (2008)         Retrospective, Observational         1514         M         OR 2.2 (95% CI 1.4–3.6)           Najima <i>et al</i> (2009)         Retrospective, Observational         1514         M         OR 2.2 (95% CI 1.4–3.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | Gerber et al (2008)                                     | Retrospective, Observational                               | 1514                     | М        | OR 2.4 (95% CI 1.8–3.3)                  | Υ                            |
| Zumberg et al (2002)         RCT         159         M $P < 0.033$ Gerber et al (2008)         Retrospective, Observational         1514         M         OR 2·2 (95% CI 1·4-3·6)           Najima et al (2009)         Retrospective, Observational         622         M         HR 2·63 (95% CI 0·77-9·00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | Najima <i>et al</i> (2009)                              | Retrospective, Observational                               | 622                      | М        | HR 1.41 (95% CI 1.01–1.97)               | Υ                            |
| Gerber et al (2008)         Retrospective, Observational         1514         M         OR 2·2 (95% CI 1·4-3·6)           Najima et al (2009)         Retrospective, Observational         622         M         HR 2·63 (95% CI 0·77-9·00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other co-morbidities –                                | Zumberg et al (2002)                                    | RCT                                                        | 159                      | М        | P < 0.033                                | Υ                            |
| Retrospective, Observational 622 M HR 2-63 (95% CI 0-77–9-00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | veno-occlusive disease                                | Gerber et al (2008)                                     | Retrospective, Observational                               | 1514                     | М        | OR 2.2 (95% CI 1.4–3.6)                  | Υ                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | Najima <i>et al</i> (2009)                              | Retrospective, Observational                               | 622                      | М        | HR 2.63 (95% CI 0.77–9.00)               | Z                            |

| in minder ()                      |          |                            |             |
|-----------------------------------|----------|----------------------------|-------------|
| III SLUUY (n)                     | Analysis | OR/HR/RR/P value           | significant |
| Prospective, Interventional 141   | M        | r = 0.055; P < 0.001       | Υ           |
|                                   |          |                            |             |
| Retrospective, Observational 2942 | М        | OR 6.72 (95% CI 5.53-8.18) | Υ           |
|                                   |          |                            |             |
|                                   |          |                            |             |
| nal                               | 2942     | 2942 M                     | М           |

RCT, randomised controlled trial; RR, relative risk; U, univariate analysis; WHO, World Health Organization; Y, yes

<sup>+</sup>Data from Rebulla et al, 1997

†Minor haemorrhage. No association with major haemorrhage

# Recommendations

- Give prophylactic platelet transfusions (platelet transfusions to patients who do not have clinically significant bleeding [WHO grade 0 or 1] and do not require a procedure) to patients with reversible bone marrow failure receiving intensive chemotherapy or undergoing allogeneic HSCT to maintain a platelet count at or above  $10 \times 10^{9}/l$  (1B)
- Use only one adult dose (one unit) routinely for prophylactic platelet transfusions (1A)
- Consider not giving prophylactic platelet transfusions to well patients with no evidence of bleeding who have had an autologous stem cell transplant (2B)
- Consider increasing the threshold for prophylactic platelet transfusion to between 10 to  $20 \times 10^9/l$  in patients judged to have additional risk factors for bleeding. Individual review is required. (2C)

# Prophylactic transfusion of platelets to patients with thrombocytopenia because of chronic bone marrow failure, where recovery is not anticipated

There is little evidence to inform practice. A retrospective study considered platelet transfusion in outpatients with stable chronic severe aplastic anaemia (AA) (Sagmeister et al, 1999). Prophylactic platelets were given if the count was  $5 \times 10^{9}$ /l or less. In total, 55 239 patient days were reviewed of which there were 18 706 days when the platelet count was  $10 \times 10^{9}$ /l or less. All deaths from haemorrhage were associated with alloimmunisation or withdrawal from treatment. Three non-fatal major bleeding episodes occurred. The authors concluded that this restrictive policy, with a median transfusion interval of 7 days, was feasible, safe and economical.

International guidelines that consider patients with chronic thrombocytopenia recommend either a 'no prophylaxis' strategy (Schiffer et al, 2001; Liumbruno et al, 2009; Kaufman et al, 2015) or prophylaxis below a count of  $5 \times 10^9$ /l (The Board of the German Medical Association on the Recommendation of the Scientific Advisory Board 2009).

A major concern in using a threshold of  $5 \times 10^9$ /l is the reported inaccuracy of current automated counters when the platelet count is very low (Segal et al, 2005; De la Salle et al, 2012).

A policy of prophylaxis has an impact on resources and on patient quality of life.

Recent BCSH guidelines for the diagnosis and management of adult AA and for the diagnosis and management of adult myelodysplastic syndromes (Killick et al, 2014, 2015) advise a no prophylaxis strategy for patients who are not receiving active treatment, with the latter including patients taking low dose oral chemotherapy or azacitidine (Killick et al, 2014).

Guideline

**Fable III.** (Continued)

373

Guidalina

13552141, 2017, 3. Downloaded from https://onlinelibaray.wiley.com/doi/10.1111/bjh.1423 by Harvard University, Wiley Online Libaray on [10/09/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Libaray for rules of use; OA articles are governed by the applicable Creative Commons License

### Recommendations

- A no prophylaxis platelet transfusion strategy should be used for patients with asymptomatic chronic bone marrow failure (including those taking low dose oral chemotherapy or azacitidine) (2B)
- Prophylactic platelet transfusion should be given to patients with chronic bone marrow failure receiving intensive treatment (1B)
- Patients with chronic bleeding of WHO grade 2 or above require individual management according to the severity of their symptoms and signs. A strategy of prophylaxis (e.g. twice a week) should be considered (2C)

# Prophylactic transfusion of platelets to other patient groups

Platelet function defects, immune-mediated thrombocytopenia and thrombotic thrombocytopenic purpura are considered in later sections. There is little evidence to guide practice in other patient populations. One patient group who are significant users of prophylactic platelet transfusions are those in critical care. A large observational study of critically ill patients showed that 9% (169/1923) of all critically ill patients received platelet transfusions and 55% (296/534 units) of these were given on days when no significant bleeding occurred (Stanworth *et al*, 2013b). The optimal platelet transfusion management of these patients (Lieberman *et al*, 2013) may differ depending upon the underlying clinical diagnosis (Assir *et al*, 2013).

As the evidence base in non-haematological patients is sparse we have extrapolated the evidence from studies in haematology patients to this population as a basis for our recommendation until further evidence is available.

### Recommendation

• Platelet count thresholds used for reversible bone marrow may be used as a general guide for prophylactic platelet transfusion in patients with critical illness in the absence of bleeding or planned procedures (2C)

# Prophylactic platelet transfusion prior to procedures or surgery

### Bone marrow aspirates and trephine biopsies

According to the confidential registry of complications after bone marrow aspirates and trephines the risk of significant bleeding is very low (less than 1 in 1000), and the majority of patients with bleeding did not have significant thrombocytopenia (Table IV). Maintaining pressure on the biopsy site until bleeding has stopped is advised.

| s.     |
|--------|
| sport  |
| y re   |
| talit  |
| mor    |
| ity/J  |
| rbid   |
| OUI    |
| ıtial  |
| ider   |
| conf   |
| К      |
| Ц<br>Ш |
| ted    |
| por    |
| ts re  |
| ven    |
| ng     |
| eedi   |
| ie bl  |
| vers   |
| . Ad   |
| psy    |
| bio    |
| hine   |
| trep   |
| /or    |
| and    |
| rate   |
| aspira |
| MO     |
| narr   |
| ne n   |
| Boi    |
| N.     |
| Table  |
| Ĥ      |

|                                                                               |                                                                                                                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                     |                                                | Risk factors for haemorrhage                                                                                                                                                                                                                                                                                                                                                                                                                                                           | norrhage                     |                             |                            |             |            |            |                     |     |     |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|----------------------------|-------------|------------|------------|---------------------|-----|-----|
| Study                                                                         | Study<br>period                                                                                                                                                                                       | Hospitals<br>( <i>n</i> )                                                | Procedures ( <i>n</i> )                                                                                                                                                                                                                                             | Haemorrhages<br>( <i>n</i> )                   | Thrombocytopenia $(<50 \times 10^9/I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aspirin                      | Heparin                     | Warfarin                   | DIC         | Other      | Obesity    | Renal<br>Impairment | SUM | MPN |
| Bain (2003)                                                                   | 1995–2000<br>2001                                                                                                                                                                                     | 34<br>60                                                                 | 39 264<br>19 332                                                                                                                                                                                                                                                    | 14                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                            | 0                           | _                          | 2           | 0          | 2          | NR                  | 5   | 6   |
| Bain (2004)                                                                   | 2002                                                                                                                                                                                                  | 53                                                                       | 13 506                                                                                                                                                                                                                                                              | 10                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                            | 1                           | 1                          | 0           | 0          | 1          | 2                   | 1   | 5   |
| Bain (2005)                                                                   | 2003                                                                                                                                                                                                  | 63                                                                       | 19 259                                                                                                                                                                                                                                                              | 11                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                            | 0                           | 1                          | 0           | 1*         | 1          | 0                   | 1   | 5   |
| Bain (2006)                                                                   | 2004                                                                                                                                                                                                  | 120                                                                      | 20 323                                                                                                                                                                                                                                                              | 6                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                            | 0                           | 0                          | 0           | 1÷         | 0          | 0                   | 1   | 3   |
| Devalia§                                                                      | 2006                                                                                                                                                                                                  | 49                                                                       | 15 388                                                                                                                                                                                                                                                              | 8                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                            | 0                           | 1                          | 0           | 0          | 3          | 0                   | 0   | 4   |
| Devalia§                                                                      | 2007                                                                                                                                                                                                  | NR                                                                       | NR                                                                                                                                                                                                                                                                  | 8                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                            | 0                           | 1                          | 1           | 1÷         | 0          | 0                   | 0   | 1   |
| Devalia§                                                                      | 2008                                                                                                                                                                                                  | NR                                                                       | NR                                                                                                                                                                                                                                                                  | 11                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                            | 0                           | 1                          | 1           | 1          | 3          | 0                   | 1   | 2   |
| Devalia<br>(2013)                                                             | 2011                                                                                                                                                                                                  | 45                                                                       | 9295                                                                                                                                                                                                                                                                | 6                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                            | 0                           | 0                          | 0           | 1+         | 1          | 0                   | 2   | 0   |
| DIC, dissemi<br>*Patient had<br>†Patient had<br>‡Patient had<br>§Personal cor | DIC, disseminated intravascular coagu<br>*Patient had von Willebrand disease<br>†Patient had deranged coagulation ass<br>‡Patient had alcohol related problems<br>§Personal communication with Dr Vii | ılar coagulatio<br>disease<br>lation associa<br>problems<br>ith Dr Vinod | DIC, disseminated intravascular coagulation; MDS, myelodys<br>*Patient had von Willebrand disease<br>†Patient had deranged coagulation associated with myeloma<br>‡Patient had alcohol related problems<br>§Personal communication with Dr Vinod Devalia, Consultar | dysplastic syndron<br>ma<br>Itant Haematologis | <ul> <li>DIC, disseminated intravascular coagulation; MDS, myelodysplastic syndromes; MPN, myeloproliferative neoplasm; NR, not reported</li> <li>*Patient had von Willebrand disease</li> <li>†Patient had deranged coagulation associated with myeloma</li> <li>‡Patient had alcohol related problems</li> <li>§Personal communication with Dr Vinod Devalia, Consultant Haematologist, Princess of Wales Hospital, Abertawe Bro Morgannwg University Health Board, Wales</li> </ul> | erative neop<br>ospital, Abe | lasm; NR, nd<br>rtawe Bro M | ot reported<br>organnwg Uj | niversity I | Health Boo | ırd, Wales |                     |     |     |

### Central venous catheters

Seventeen observational studies have reported bleeding outcomes in thrombocytopenic patients after insertion of central venous catheters (CVCs) (Table V). Only one case of severe bleeding (Hb drop >15 g/l) was reported throughout all of these studies (Weigand et al, 2009). Three studies reported on risk factors, in addition to thrombocytopenia, associated with bleeding. In two of these studies ultrasound guidance was not used and, on multivariate analysis, the risk of bleeding was significantly increased by the number of attempts, site of insertion (jugular versus subclavian) and failed guidewire insertion (Barrera et al, 1996; Fisher & Mutimer, 1999). In the third study, where ultrasound guidance was used, no such correlation was identified (Zeidler et al, 2011). Systematic reviews of complications of CVC placement (Randolph et al, 1996; Hind et al, 2003) and a more recent small study (Tomoyose et al, 2013) found that ultrasound guidance significantly reduced failure and complication rates.

Zeidler *et al* (2011) looked at the risk of bleeding according to platelet count thresholds with multivariate analysis. All CVCs were un-tunnelled and inserted by experienced individuals and the analysis was controlled for sex, type of leukaemia, insertion site and use of prophylactic platelet transfusions. The risk of bleeding only increased when the platelet count was less than  $20 \times 10^9/l$  (Odds ratio 2.88, 95% confidence interval 1.23–6.75, P = 0.015) (Zeidler *et al*, 2011). In a large study by Haas *et al* (2010), tunnelled CVCs were installed and all bleeding episodes were effectively controlled by simple pressure at the site of insertion. The platelet count threshold for insertion was  $25 \times 10^9/l$  (Haas *et al*, 2010).

One additional prospective study assessed insertion of peripherally inserted central catheters (PICCs) without prophylactic platelet transfusions (Potet *et al*, 2013). Among the 50 patients who had a line inserted with a platelet count less than  $20 \times 10^9$ /l, only one bleeding episode occurred (minor oozing).

One prospective non-randomised study assessed the risk of bleeding after traction removal of tunnelled cuffed CVCs in patients with abnormal platelet counts or an increased International Normalised Ratio (INR) (Stecker *et al*, 2007). Of the 179 patients enrolled in the study, 14 had a time to haemostasis of over 5 min and only one of these patients had a platelet count  $<100 \times 10^9$ /l.

### Lumbar punctures and neuraxial anaesthesia

A wide-ranging review of the literature has been performed to assess the risk of spinal haematoma following lumbar puncture and spinal and epidural anaesthesia. The evidence was based on case series, case reports and expert opinion. There was insufficient information to consider epidural and spinal anaesthesia separately (van Veen *et al*, 2010).

The authors recommend that providing the platelet count is stable and no additional coagulopathy or platelet function defect is present a platelet count of  $\ge 80 \times 10^9$ /l should be used for placing/removing an epidural catheter or performing spinal anaesthesia and a count of  $\ge 40 \times 10^9$ /l for lumbar puncture (van Veen *et al*, 2010). As the technique for spinal anaesthesia is comparable to that of a lumbar puncture, a count of  $\ge 40 \times 10^9$ /l for both of these procedures and a separate threshold of  $80 \times 10^9$ /l for epidural anaesthesia would be more logical.

We are aware of no new studies that have contributed to the literature since this review.

### Liver biopsy

A total of 2740 percutaneous liver biopsies were conducted in the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) trial (Seeff *et al*, 2010); only 16 patients (0·6%) had a serious adverse event due to bleeding. Percutaneous liver biopsies are considered safe when the platelet count is at least  $50-60 \times 10^9/1$  (British Society of Gastroenterologists (BSG) 2004, Rockey *et al*, 2009). Below this level, transjugular liver biopsy (TJLB) should be considered. This procedure has been shown to be safe in patients with low platelet counts and with modern techniques can produce comparable histological samples to those from a percutaneous route (Wallace *et al*, 2003; Kalambokis *et al*, 2007; Mammen *et al*, 2008).

### Renal biopsy

Patients with uraemia have a platelet dysfunction that is thought to be associated with von Willebrand factor (Hedges et al, 2007). Uncontrolled hypertension, high serum creatinine, anaemia, older age and female sex have been shown to be risk factors for bleeding following renal biopsy and to prolong the bleeding time (Manno et al, 2004; Whittier, 2004; Torres Munoz et al, 2011; Zhu et al, 2014). Reversal of these problems by treatment of hypertension (Zhu et al, 2014), dialysis (Hedges et al, 2007; Mannucci, 2012), the use of desmopressin (Mannucci et al, 1983; Hedges et al, 2007; Manno et al, 2011) or conjugated oestrogens (Mannucci, 2012) and the correction of anaemia (Hedges et al, 2007) have all been reported to reduce the risk of bleeding in non-RCTs. Although treatment of anaemia with recombinant human erythropoietin can take many weeks a more rapid effect on haemostasis has been noted. This may be through improved platelet adhesion and aggregation (Zwaginga et al, 1991; Cases et al, 1992) and an increase in the number of reticulated platelets within 7 days (Tàssies et al, 1998).

Transjugular renal biopsy has been used in patients in whom percutaneous renal biopsy has failed or been contraindicated and has produced a similar diagnostic yield and safety profile (Cluzel *et al*, 2000). Platelet transfusion is likely to be ineffective or, at best, very short-lived as the same dysfunction affecting the patient's own platelets will be acquired. The transfusion may also be harmful in patients who

|                          |                  |               |                              |                     |                                              |                                     |                               | Number of                           |                             |                         | Number of<br>procedures with     |
|--------------------------|------------------|---------------|------------------------------|---------------------|----------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|-----------------------------|-------------------------|----------------------------------|
|                          |                  |               | Number of                    |                     | Definition of                                | Number of                           |                               | procedures with<br>thrombocytopenia | Number of                   | Number of<br>procedures | thrombocytopenic<br>participants |
| Study                    | Study duration   | Type of study | participants<br>(procedures) | Type of patient     | throm<br>bocytopenia $(\times 10^9 \Lambda)$ | procedures with<br>thrombocytopenia | Definition of<br>coagulopathy | and/or<br>coagulopathy              | procedures with<br>bleeding | with major<br>bleeding  | bleeding (major<br>bleeding)     |
| Carr et al (2006)        | Jan'93 to Jun'03 | Observational | 115                          | Acute leukaemia     | NR                                           | NR*                                 | NR                            | NR                                  | 0                           | 0                       | 0                                |
|                          |                  | Retrospective | (NR)                         |                     |                                              |                                     |                               |                                     |                             |                         | (0)                              |
| Mumtaz <i>et al</i>      | Sep'97 to Aug'99 | Observational | 1825                         | Haematological      | <150                                         | NR                                  | INR > 1.3                     | 88                                  | 4                           | 0                       | 3                                |
| (2000)                   |                  | Retrospective | (2010)                       | malignancy; solid   |                                              |                                     | aPTT > 37 s                   |                                     |                             |                         | (0)                              |
|                          |                  |               |                              | tumours; ICU; renal |                                              |                                     |                               |                                     |                             |                         |                                  |
|                          |                  |               |                              | failure             |                                              |                                     |                               |                                     |                             |                         |                                  |
| Foster et al (1992)      | Jan'88 to Dec'88 | Observational | 40                           | Liver disease       | <80                                          | 122                                 | PT < 40%                      | 122                                 | 0                           | 0                       | 0                                |
|                          |                  | Retrospective | (259)                        |                     |                                              |                                     | aPTT $\ge$ 77 s               |                                     |                             |                         | (0)                              |
| Barrera <i>et al</i>     | Jul'90 to Sep'93 | Observational | 115                          | Haematological      | ≤50                                          | 108                                 | Prolonged PT and              | 8                                   | 23                          | 0                       | 20                               |
| (1996)                   |                  | Prospective   | (115)                        | malignancy; solid   |                                              |                                     | aPTT                          |                                     |                             |                         | (0)                              |
|                          |                  |               |                              | tumours             |                                              |                                     |                               |                                     |                             |                         |                                  |
| Cavanna <i>et al</i>     | Dec'00 to Jan'09 | Observational | 1660                         | Haematological      | ≤50                                          | 116                                 | NR                            | NR                                  | 4†                          | 0                       | NR                               |
| (2010)                   |                  | Prospective   | (1978)                       | malignancy; solid   |                                              |                                     |                               |                                     |                             |                         |                                  |
|                          |                  |               |                              | tumours             |                                              |                                     |                               |                                     |                             |                         |                                  |
| Della Vigna <i>et al</i> | Sep'01 to Aug'08 | Observational | 157 (239)                    | Haematological      | -50                                          | NR                                  | PT or $aPTT >$                | 45                                  | 1                           | 0                       | 0                                |
| (2009)                   |                  | Retrospective |                              | malignancy; solid   |                                              |                                     | 2·2 × normal                  |                                     |                             |                         | (0)                              |
|                          |                  |               |                              | tumours             |                                              |                                     |                               |                                     |                             |                         |                                  |
| Doerfler <i>et al</i>    | Oct'92 to Oct'93 | Observational | 76                           | Haematological      | S50                                          | 41                                  | PT or aPTT >                  | 76                                  | 7                           | 0                       | 7                                |
| (1996)                   |                  |               | (104)                        | malignancy; solid   |                                              |                                     | $1.5 \times normal$           |                                     |                             |                         | (0)                              |
|                          |                  |               |                              | tumours; liver      |                                              |                                     |                               |                                     |                             |                         |                                  |
|                          |                  |               |                              | transplant; other   |                                              |                                     |                               |                                     |                             |                         |                                  |
| Fisher and               | Jan'96 to Sep'97 | Observational | 283                          | Liver disease       | 50                                           | 146                                 | INR > 1.5                     | NR                                  | 62                          | 1                       | 19                               |
| Mutimer (1999)           |                  | Prospective   | (658)                        |                     |                                              |                                     |                               |                                     |                             |                         | (0)                              |
| Haas et al (2010)        | Jul'01 to Jul'08 | Observational | 2514                         | Haematological      | ≤50                                          | 344                                 | $INR \ge 1.5$                 | 626                                 | 3‡                          | 1                       | 0                                |
|                          |                  | Retrospective | (3170)                       | malignancy; renal   |                                              |                                     |                               |                                     |                             |                         | (0)                              |
|                          |                  |               |                              | failure; other      |                                              |                                     |                               |                                     |                             |                         |                                  |
| Hong Pheng Loh           | Jan'02 to Dec'04 | Observational | 80                           | Acute leukaemia     | <50                                          | 22                                  | NR                            | NR                                  | 2                           | 0                       | 0                                |
| and Hon Chui             |                  | Retrospective | (80)                         |                     |                                              |                                     |                               |                                     |                             |                         | (0)                              |
| (2007)                   |                  |               |                              |                     |                                              |                                     |                               |                                     |                             |                         |                                  |
| Ray and Shenoy           | Oct'95 to Sep'96 | Observational | 105                          | NR                  | <50                                          | 37                                  | NR                            | NR                                  | 4                           | 1                       | 0                                |
| (1997)                   |                  | Prospective   | (112)                        |                     |                                              |                                     |                               |                                     |                             |                         | (0)                              |
| Tercan et al (2008)      | Apr'02 to Jul'06 | Observational | 133                          | NR                  | ≤50                                          | 38                                  | INR $\geq 1.5$ or             | 06                                  | 8                           | 0                       | NR                               |
|                          |                  |               |                              |                     |                                              |                                     |                               |                                     |                             |                         |                                  |

375

Guideline

|                         |                  |               |              |                     |                     |                  |               | Number of        |                 |            | procedures with  |
|-------------------------|------------------|---------------|--------------|---------------------|---------------------|------------------|---------------|------------------|-----------------|------------|------------------|
|                         |                  |               |              |                     |                     |                  |               | procedures with  |                 | Number of  | thrombocytopenic |
|                         |                  |               | Number of    |                     | Definition of       | Number of        |               | thrombocytopenia | Number of       | procedures | participants     |
|                         |                  |               | participants |                     | thrombocytopenia    | procedures with  | Definition of | and/or           | procedures with | with major | bleeding (major  |
| Study                   | Study duration   | Type of study | (procedures) | Type of patient     | $(\times 10^{9}/l)$ | thrombocytopenia | coagulopathy  | coagulopathy     | bleeding        | bleeding   | bleeding)        |
| Tomoyose et al          | Jan'03 to Feb'09 | Observational | 72           | Haematological      | ≤50                 | 67               | NR            | NR               | 5               | 0          | 4                |
| (2013)                  |                  | Retrospective | (108)        | malignancies        |                     |                  |               |                  |                 |            | (0)              |
| Weigand et al           | Oct'05 to Apr'07 | Observational | 196          | Liver disease; ICU; | ≤50                 | 19               | INR > 1.5     | 51               | NR              | 34         | NR               |
| (2009)                  |                  | Prospective   | (NR)         | renal failure;      |                     |                  |               |                  |                 |            | (1)              |
|                         |                  |               |              | haematological      |                     |                  |               |                  |                 |            |                  |
|                         |                  |               |              | malignancy          |                     |                  |               |                  |                 |            |                  |
| Zeidler et al (2011)    | '01 to '07       | Observational | 193          | Acute leukaemia     | ≤50                 | 173              | INR > 1.4     | NR               | \$\$            | 0          | 5                |
|                         |                  | Retrospective | (604)        |                     |                     |                  |               |                  |                 |            | (0)              |
| Duffy and Coyle         | Jan'99 to Jul'11 | Observational | 55           | TTP                 | 530                 | 29               | NR            | NR               | 17              | 0          | 10               |
| (2013)                  |                  | Retrospective | (57)         |                     |                     |                  |               |                  |                 |            | (0)              |
| Napolitano <i>et al</i> | Jan'99 to Jun'09 | Observational | 431          | Haematological      | <30                 | 39               | NR            | NR               | 8               | 0          | 1                |
| (2013)                  |                  | Retrospective |              | disorders           |                     |                  |               |                  |                 |            | (0)              |

# PT, prothrombin time; TTP, thrombotic thrombocytopenic purpura

\*Median platelet count 72  $\times$  10<sup>9</sup>/l, range 10–347

 $\dagger$ Patients all had puncture of artery causing a haematoma

#Bleeding in this study is defined as bleeding that required at least pressure at the insertion site to stop bleeding

# Guideline

Number of

Table V. (Continued)

progress to renal transplant, because of the risk of alloimmunisation (Scornik *et al*, 2013).

### Dental extraction

One recent small RCT (23 patients requiring 35 procedures and 84 teeth removed) has shown a low rate of bleeding complications without blood product support, in patients prior to liver transplantation (Perdigão *et al*, 2012). Patients had platelet counts  $\geq$ 30 × 10<sup>9</sup>/l, an INR  $\leq$  3·0 and were randomised to the presence or absence of TXA on gauze used to apply local pressure. A third of patients had a platelet count <50 × 10<sup>9</sup>/l. Only one patient in the control arm had postoperative bleeding, which was controlled with local pressure. Further research is required before a recommendation can be made to use local haemostatic measures alone.

# Surgery

There remains a lack of evidence to guide the prophylactic use of platelet transfusions before major surgery. Guidelines from around the world suggest a threshold of  $50 \times 10^{9}$ /l before major surgery (British Committee for Standards in Haematology Blood Transfusion Task Force 2003, Samama et al, 2006; Liumbruno et al, 2011; Vassallo et al, 2013), and a threshold of  $100 \times 10^9$ /l prior to neurosurgery or ophthalmic surgery involving the posterior segment of the eye, because of the critical sites involved (British Committee for Standards in Haematology Blood Transfusion Task Force 2003, Samama et al, 2006; Liumbruno et al, 2011; Vassallo et al, 2013). Cataract surgery is an avascular procedure and therefore platelet transfusions are not routinely required. Measurement of the platelet count increment following platelet transfusion pre-procedure is desirable, but may be limited by the circumstances.

### Recommendations

- Whenever possible use a procedure/equipment associated with the lowest bleeding risk. Apply local measures, such as compression, to reduce the risk of bleeding post procedure. (1C)
- Do not give platelet transfusions routinely prior to:
  - o bone marrow aspirate or trephine biopsy (1B)
  - o peripherally inserted central catheters (PICCs) (2C)
  - o traction removal of tunnelled CVCs (2C)
  - o cataract surgery (2C)
- The following procedures may be performed above the platelet count threshold indicated
  - o venous central lines (both tunnelled and un-tunnelled), inserted by experienced staff using ultrasound guidance techniques, when the platelet count is  $>20 \times 10^9/l$  (1B)

- o lumbar puncture when the platelet count is  $\geq 40 \times 10^9/l$  (2C)
- o insertion/removal of epidural catheter when the platelet count is ≥80 ×  $10^9/l$  (2C)
- o major surgery when the platelet count is  $>50 \times 10^9/l$  (1C)
- o neurosurgery or ophthalmic surgery involving the posterior segment of the eye when the platelet count is >100  $\times$  10<sup>9</sup>/l (1C)
- o percutaneous liver biopsy when the platelet count is  $>50 \times 10^9/l$  (2B). Consider trans-jugular biopsy if the platelet count is below this level (2B)
- Prior to renal biopsy ensure potential risk factors for bleeding are corrected: anaemia (iron and erythropoietin) uraemia (dialysis) (1B). If renal biopsy is urgent consider desmopressin pre-procedure (1B) or oestrogen if time allows (2B)
- In renal failure platelet transfusion should be avoided as infused platelets will acquire a dysfunction similar to the patient's own platelets and may result in alloimmunisation (1B)

### Therapeutic platelet transfusions

There is little evidence for the effectiveness of platelet transfusions or the optimal dose when a patient with thrombocytopenia is actively bleeding i.e. WHO grade 2 or above (Estcourt *et al*, 2013). This may reflect the challenges involved in conducting trials in these often complex clinical settings and also the fact that platelet dysfunction may develop with major exsanguinating bleeding that is not captured by measuring the platelet count (Wohlauer *et al*, 2012). One recent large national audit reported the resolution of bleeding after a therapeutic platelet transfusion in 58% of cases with clinically significant bleeding (WHO grade 2 or above) (Estcourt *et al*, 2012a).

Current recommendations are based on consensus guidelines from around the world (British Committee for Standards in Haematology Blood Transfusion Task Force 2003, Samama *et al*, 2006; Rossaint *et al*, 2010; Liumbruno *et al*, 2011, National Blood Authority 2011; Spahn *et al*, 2013; Vassallo *et al*, 2013) and recently revised BCSH guidelines for major haemorrhage (Hunt *et al*, 2015).

### Recommendations

- Severe bleeding, maintain the platelet count above  $50 \times 10^9$ /l. Consider empirical use for the initial management of major haemorrhage (1C).
- In patients with multiple trauma, traumatic brain injury or spontaneous intracerebral haemorrhage, maintain the platelet count above  $100 \times 10^9/l$  (2C)

377

• In patients with bleeding that is not considered severe or life-threatening, consider platelet transfusion if the platelet count is below 30 × 10<sup>9</sup>/l (2C)

# Platelet function disorders (congenital)

Glanzmann Thrombasthenia (GT) is usually a severe bleeding disorder in which many patients do not express aIIbb3 integrin on the platelet surface. This increases the risk of alloimmunisation to platelet antigens and refractoriness to platelet transfusion, which may prevent the effective treatment of bleeding (Hayward et al, 2006; Bakdash et al, 2008). Recombinant Factor VIIa (rFVIIa; NovoSeven, Novo Nordisk Limited, Bagsværd, Denmark) is licensed as a pro-haemostatic treatment in GT patients with anti-platelet antibodies and platelet refractoriness. However, most UK experts also advocate rFVIIa first line for the treatment or prevention of bleeding in GT, and that rFVIIa plus platelet transfusion should be considered for refractory bleeding or before high bleeding-risk surgery (Bolton-Maggs et al, 2006). In less severe heritable platelet function disorders, including Bernard-Soulier syndrome, TXA and desmopressin may be sufficient for haemostasis.

### Recommendations

- For first line treatment or prevention of bleeding, consider rFVIIa in Glanzmann thrombasthenia and TXA plus desmopressin in other congenital platelet function disorders (2B)
- If pharmaceutical therapies are contraindicated, ineffective or if there is high risk of bleeding, consider transfusion of platelets. In Glanzmann thrombasthenia, consider HLA-matched platelets. (2C)

# Platelet function disorders (acquired)

### Anti-platelet agents

If a patient has recently ingested an anti-platelet agent, any platelets transfused prior to or during the onset of action of the drug will acquire the same defect as the patients' own platelets (Makris et al, 2013) (Table VI). The effect of platelet transfusion to control bleeding outside of this critical period is unclear. A recent RCT of 190 adults taking antiplatelet agents with spontaneous intracranial haemorrhage found no evidence to support the use of platelet transfusions (Baharoglu et al, 2016). This confirms the findings of two systematic reviews examining the treatment of adults on anti-platelet agents with spontaneous or traumatic intracranial haemorrhage which found no evidence of a benefit, however all included studies were of low or very low quality (Batchelor & Grayson, 2012; Nishijima et al, 2012). In vitro experiments and a case report suggest that platelet dysfunction caused by aspirin is much easier to correct with platelet transfusion than treatment with clopidogrel or ticagrelor (Vilahur et al, 2007; Li et al, 2012; Hansson et al, 2014; Godier et al, 2015). A pilot study in 14 healthy volunteers supported these in vitro findings, as two units of platelets was shown to overcome clopidogrel-induced low platelet reactivity but there was no improvement in ADP-induced platelet aggregation (Pruller et al, 2011).

Platelet transfusion to reverse the effects of aspirin is usually unnecessary as, although it increases the risk of surgical bleeding 1.5-fold, it does not increase bleeding severity for most procedures (Makris *et al*, 2013).

In addition to concerns regarding efficacy of platelet transfusion for anti-platelet agents other than aspirin, many patients who are prescribed these drugs are at high risk of arterial thrombosis and a platelet transfusion may increase

| Table VI. | Onset of action and half-life of anti-platelet agents. |
|-----------|--------------------------------------------------------|
|           |                                                        |

| Anti-platelet<br>agent | Onset of action<br>after oral administration | Plasma half-life of<br>active drug or metabolite | Time from drug administration when<br>any platelet transfusion given will<br>have reduced efficacy (active drug<br>or metabolite still present in plasma<br>at >25% peak drug levels) | Time to normal platelet<br>function/coagulation<br>activity after discontinuation<br>of drug |
|------------------------|----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Abciximab              | Not applicable                               | 30 min                                           | 1 h                                                                                                                                                                                   | 24–48 h                                                                                      |
| Aspirin                | <1 h                                         | 15-20 min                                        | 2 h                                                                                                                                                                                   | 5–7 days                                                                                     |
|                        | 3–4 h with enteric-<br>coated preparations   |                                                  | 4-5 h with enteric-coated preparations                                                                                                                                                |                                                                                              |
| Clopidogrel            | 4–8 h                                        | 30 min                                           | 12 h                                                                                                                                                                                  | 5–7 days                                                                                     |
| Dipyridamole           | 1·25 h                                       | 2–3 h                                            | 5–7 h                                                                                                                                                                                 | 24 h                                                                                         |
| Eptifbatide            | Not applicable                               | 2.5 h                                            | 4 h                                                                                                                                                                                   | 4–8 h                                                                                        |
| Ibuprofen              | 45 min–2 h                                   | 2 h                                              | 6 h                                                                                                                                                                                   | 24 h                                                                                         |
| Prasugrel              | 2–4 h                                        | 7 h                                              | 16–18 h                                                                                                                                                                               | 5–7 days                                                                                     |
| Ticagrelor             | 1.5 h                                        | 8–12 h                                           | 18–26 h                                                                                                                                                                               | 3–5 days                                                                                     |
| Tirofiban              | Not applicable                               | 1.5 h                                            | 4 h                                                                                                                                                                                   | 4–8 h                                                                                        |

this risk (Makris *et al*, 2013). In the RCT of spontaneous intracranial haemorrhage in patients on anti-platelet agents (Baharoglu *et al*, 2016), as well as no evidence of benefit, the odds of death or disability at 3 months were higher in those who received platelet transfusion compared to those who received standard care.

In a pilot study of 14 patients administered two units of platelets 1-2 h prior to urgent surgery to "transiently reverse" the effects of aspirin and clopidogrel, one patient developed acute coronary syndrome 4 days after surgery (aspirin and clopidogrel had been started 6 and 24 h after surgery, respectively) (Thiele *et al*, 2012).

In contrast, TXA has been used in three RCTs in patients taking clopidogrel (with or without aspirin) before coronary artery bypass grafting (total 766 patients) and significantly reduced blood transfusion requirements (Ahn *et al*, 2012; Shi *et al*, 2013a,b). No differences in adverse events were reported between the groups; however, the authors advised caution regarding the small numbers and limited follow-up (in the two largest studies follow-up was for 1 year).

### Uraemia

Management of the acquired anti-platelet effect of uraemia is discussed in the section above on Platelet transfusion prior to procedures and surgery under 'Renal biopsy'.

### Recommendations

- Do not use platelet transfusion pre-procedure when antiplatelet agents have not been discontinued (2C)
- Use general haemostatic measures to treat bleeding in patients during treatment with aspirin, P2Y<sub>12</sub> antagonists or glycoprotein IIa/IIIb inhibitors. If necessary, consider drug cessation and reversal of the effect of coprescribed anticoagulants (2C).
- Use TXA to counteract the effect of anti-platelet agents when a risk/benefit assessment would support this (1B)
- Consider the use of platelet transfusion as an additional measure to those suggested above for critical bleeding (2C).
- Consider platelet transfusion to prevent bleeding in severe thrombocytopenia ( $<10 \times 10^9$ /l) caused by abciximab (2C).

### Immune thrombocytopenia

### Primary immune thrombocytopenia (ITP)

ITP is an acquired immune-mediated disorder characterised by isolated thrombocytopenia (platelet count  $<100 \times 10^{9}/l$ ), in the absence of any obvious underlying cause (Provan *et al*, 2010). Signs and symptoms vary widely; some patients have little or no bleeding, whereas others can experience life-threatening/fatal haemorrhage. Platelet transfusions are not recommended as prophylaxis (Provan *et al*, 2010). The Obstetric Anaesthetists' Association advise that for ITP and gestational thrombocytopenia, if the patient and platelet count are stable and the coagulation screen normal, neuroaxial blockade can be done when the count is  $>50 \times 10^9/1$ when performed by a skilled and experienced anaesthetist (Lyons & Hunt, 2010). Platelets have been used, often in association with other treatments, to treat major bleeding (Neunert *et al*, 2011). There are no RCTs; publications consist of case reports, observational studies and uncontrolled interventional studies.

A review of these studies (Table VII) shows that high-dose or high-frequency platelet transfusions have been effective at stopping bleeding, even if the platelet count has not been affected. A platelet count rise appears to be more sustained if platelet transfusions and intravenous immunoglobulin are administered together (Baumann *et al*, 1986; Spahr & Rodgers, 2008), and one study suggests this combination is more effective clinically (Spahr & Rodgers, 2008).

### Heparin-induced thrombocytopenia (HIT)

Guidelines on the diagnosis and management of HIT have been published (Watson *et al*, 2012). It has been widely stated that giving a platelet transfusion may increase the risk of thrombosis (Hopkins & Goldfinger, 2008; Warkentin, 2011; Linkins *et al*, 2012). However, the evidence for this is poor and based on two case series from the 1970s (16 patients in total) (Babcock *et al*, 1976; Cimo *et al*, 1979). Two more recent case series (41 patients in total) have reported no association with thrombosis (Hopkins & Goldfinger, 2008; Refaai *et al*, 2010).

### Post-transfusion purpura (PTP)

This is a rare condition associated with severe thrombocytopenia following blood transfusion and caused by antibodies against platelet-specific antigens. Bleeding can be serious and fatal. The incidence has reduced since the introduction of universal leucodepletion. Multiparous women are the main at-risk group (Bolton-Maggs *et al*, 2014). Management is based on individual case reports and case series (Murphy, 2013). Current practice is to transfuse high dose intravenous immunoglobulin without waiting for the results of laboratory investigations, with random donor platelets reserved to control severe bleeding.

### Recommendations

- Do not use prophylactic platelet transfusions in patients with immune mediated thrombocytopenia (1C)
- Only use platelet transfusion prior to a procedure or surgery when other treatment has failed and/or the intervention is urgent. Usual threshold counts may be

| Study                                                                          | Study period                    | Pts $(n)$ | Sex              | Type                                                        | Median age,<br>years (Range) | Bleeding                                                        | Corticosteroids at<br>time of Plt Tx | Treatment                                                                                                             | Post-Rx platelet<br>count                                                                                                                                                                 | Clinical response                                                                                                         |
|--------------------------------------------------------------------------------|---------------------------------|-----------|------------------|-------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Prospective, interventional, uncontrolled<br>Baumann <i>et al</i> NR<br>(1986) | onal, uncontrolled<br>NR        | ۵         | M (2)<br>F (4)   | Idiopathic (2<br>previous Rx<br>with steroids)              | 56.5 (32–85)                 | 1 pt had menorrhagia                                            | _                                    | 8 units plt tx<br>Then 400 mg/kg IVIG + 8<br>units plt tx                                                             | Plt increment after<br>IVIG + plt tx<br>(median:<br>$68 \times 10^{9}$ /l; range:<br>20-130); time to<br>baseline >60 h<br>Plt tx alone<br>(median: 31;<br>range: 1833)<br>Median time to | <ol> <li>pt: menorrhagia<br/>responded to<br/>IVIG + plt tx, but<br/>not plt tx alone</li> </ol>                          |
| Salama <i>et al</i> (2008)                                                     | NR                              | 10        | M (3)<br>F (7)   | Chronic,<br>refractory                                      | 48 (24–79)                   | Severe bleeding (5)<br>GI bleed (2)                             | 4                                    | 1 unit every 30 min<br>3–7 apheresis units<br>$(2.7 \times 10^{11} \text{ plts per unit})$                            | pasenne: o n<br>Plt count increased<br>to $>80 \times 10^{3}/l$ in<br>all cases; returned<br>to baseline in 7/10<br>by 48 h                                                               | Bleeding stopped in<br>all cases                                                                                          |
| Retrospective, Observational<br>Carr <i>et al</i> (1986) Jan 1<br>198          | tional<br>Jan 1981 –Jul<br>1984 | Ξ         | M (4)<br>F (7)   | Idiopathic (6)<br>Quinidine-<br>induced (5)                 | 71 (25–88)                   | CNS (2)<br>Epistaxis (6)<br>Upper Gl (2)<br>Petechiae alone (1) | Idiopathic (6)<br>Quinidine (1)      | Plt Tx. Median/pt 2 (Range<br>1–6)<br>Pooled (28 plt tx)<br>Apheresis (3 plt tx)                                      | 7/11 (13/31 tx)<br>received<br>"successful<br>tx" = increment<br>$\geq 20 \times 10^{9}$ /l within<br>5 h of tx 5/31 tx<br>plt count still                                                | Idiopathic (1)<br>bleeding improved<br>despite poor plt<br>increment<br>Quinidine (2)<br>bleeding decreased<br>or stopped |
| Chandramouli and<br>Rodgers (2000)                                             | NR                              | 7         | F (2)            | Autoimmune<br>associated                                    | NR (20–71)                   | Large retroperitoneal<br>bleed (1)                              | 7                                    | IVIG continuous 24-h<br>infusion + concomitant<br>apheresis plt tx (1/2                                               | higher at 24 h<br>Plt count<br>$>100 \times 10^9/I$                                                                                                                                       | NR                                                                                                                        |
| Spahr and Rodgers<br>(2008)                                                    | Jan 2000–Dec<br>2005            | 40        | M (23)<br>F (17) | Idiopathic<br>(9 previously<br>refractory to<br>IVIG alone) | 52 (19–87)                   | 33 pts                                                          | 38 (usually<br>1 mg/kg/day)          | puttesis pack every 4 m<br>IVIG (1 g/kg) continuous<br>infusion over 24 h<br>Plt apheresis unit (1 unit<br>every 8 h) | 51% achieved plt<br>count >50 $\times$ 10 <sup>9</sup> /l<br>by 24 h                                                                                                                      | Bleeding controlled<br>initially in all pts<br>regardless of plt<br>count                                                 |

380

© 2016 John Wiley & Sons Ltd British Journal of Haematology, 2017, **176,** 365–394

unachievable or unnecessary and individual case review is required (1C)

• Give therapeutic platelet transfusions (more than one dose) to treat serious bleeding (1C). In ITP, consider co-administration of intravenous immunoglobulin in addition to the platelet transfusion (2C). In PTP, intravenous immunoglobulin is the treatment of choice (1C)

### **Contraindications to platelet transfusions**

### Thrombotic thrombocytopenic purpura (TTP)

Guidelines on the diagnosis and management of TTP and other thrombotic microangiopathies have been published (Scully *et al*, 2012). Evaluation of the effect of platelet transfusions in patients with TTP between different studies are affected by differing definitions of TTP and study inclusion and exclusion criteria, therefore the evidence base is poor (Estcourt *et al*, 2013) (Table VIII). Despite this, data from these studies suggest a significant increase in mortality in patients who have received a platelet transfusion (Peigne *et al*, 2012; Estcourt *et al*, 2013). This may be because platelet transfusions precipitate further thrombotic events (Scully *et al*, 2012). One study has suggested an association between a recent platelet transfusion and an increased risk of cardiac failure (Gami *et al*, 2005).

### Recommendations

• In patients with thrombotic microangiopathies only use platelet transfusions to treat life-threatening bleeding (1C)

### **Risks from platelet transfusions**

Platelet transfusions have been associated with all types of blood transfusion reactions (Bolton-Maggs *et al*, 2014) (Table IX). Management of these reactions has been described in previous BCSH guidance (Tinegate *et al*, 2012). Acute transfusion reaction (ATR) is the most frequently reported category and largely consists of either allergic or febrile non-haemolytic reactions. These are three times more frequent with platelet transfusion than with red cell transfusion, (Bolton-Maggs *et al*, 2014).

Interventions, such as leucodepletion, the use of male donor plasma, irradiation and bacterial screening, have significantly reduced the risk of harm from platelet transfusions. Haemagglutinin testing has reduced the risk of haemolysis from the use of minor ABO mismatched units (Berseus *et al*, 2013). To further reduce this risk, group A platelets rather than group O platelets are held as stock (Bolton-Maggs *et al*, 2014). A recent review and a laboratory study have questioned the wisdom of this strategy, providing evidence of potential harm from infusion of mismatched platelet components, particularly in patients who are regularly transfused (Blumberg *et al*, 2015; Zaffuto *et al*, 2015). ABO matching of all platelet transfusions would eliminate this risk, but would have significant resource implications because of the increased stock required and associated wastage. Currently, ABO matching is achieved in around 55% of platelet transfusions (Dunbar *et al*, 2015). The introduction of an artificial PAS to replace plasma has lagged behind use in red cells but is now available and has the potential to reduce the risk of plasma-associated problems. Studies assessing the impact of PAS on allergic reactions, a relatively common plasma-associated reaction of up to 3% if mild reactions are included (Tinegate *et al*, 2012), report a significant reduction (Cazenave *et al*, 2011; Yanagisawa *et al*, 2013; Cohn *et al*, 2014; Tobian *et al*, 2014). This may also be cost effective (Kacker *et al*, 2013).

Although there is little risk of an acute reaction following transfusion of RhD positive platelets to an RhD negative recipient, alloimmunisation can occur from red cell contamination (Kitazawa et al, 2011; Moncharmont et al, 2014; Cid et al, 2015). The largest study investigating this risk has recently been published and reported that anti-D developed in only 1.44% of patients (Cid et al, 2015). This was not associated with the type of platelet component transfused or whether the patient was immunosuppressed (Cid et al, 2015). Current BCSH guidelines recommend that for RhD negative patients RhD negative red cells should always be given to women of childbearing potential, patients under 18 years, those who already have anti-D and transfusion-dependant adults (Milkins et al, 2013). Prophylactic anti-D is only recommended following transfusion of RhD positive platelets to girls and women of childbearing capacity but not to females without childbearing capacity or males (Qureshi et al, 2014).

Transfusion-related acute lung injury (TRALI) was previously more commonly reported with plasma-rich components than with red cells. This situation is no longer the case following the introduction of universal leucodepletion and the use of male donor plasma, with no recorded cases, where concordant antibodies were identified, due to platelets in recent years (Bolton-Maggs *et al*, 2015).

To date, 33/40 cases of bacterial transfusion transmitted infection (TTI) (overall mortality 28%) reported to the Serious Hazards of Transfusion (SHOT) team have been associated with platelet transfusion. Since the introduction of bacterial screening in 2010 no proven cases of TTI have been described (Bolton-Maggs *et al*, 2015). However, as bacterial contamination of platelets is known to occur despite negative screening results (Bolton-Maggs *et al*, 2015) and TTI carries a high mortality, investigation and recall of associated components should be considered for all moderate or severe febrile reactions (Tinegate *et al*, 2012).

### Recommendations

• Hospitals should establish a strategy to maximise the transfusion of ABO compatible platelets especially to patients who require regular platelet support (2B).

|                          |                                 |                        |                                                                                                                              |                 |                       | Number                        | Number                     |                      |                      |                          |                          |                                           |
|--------------------------|---------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|-------------------------------|----------------------------|----------------------|----------------------|--------------------------|--------------------------|-------------------------------------------|
| Study                    | Type of study                   | Study period           | Centres involved                                                                                                             | Country         | Number of<br>patients | received<br>plasma<br>therapy | received<br>platelet<br>Tx | Mortality§<br>Plt Tx | Thrombosis<br>Plt Tx | Mortality§<br>Non-Plt Tx | Thrombosis<br>Non-Plt Tx | Definition of TTP                         |
| Rutkow (1978)            | Unclear from the                | e text that only one o | Undear from the text that only one of the patients received platelet transfusions. One patient received plt Tx and survived. | d platelet traı | 1 sfusions. One 1     | atient recei                  | ved plt Tx and s           | urvived.             |                      |                          |                          |                                           |
| Taft (1979)              | Unclear                         | NR                     | Single centre                                                                                                                | USA             | 4                     | 4 TPE                         | 3                          | 1                    | NR                   | 0                        | NR                       | NR                                        |
| Gottschall et al         | Observational;                  | 1974–1979              | Single centre                                                                                                                | NSA             | 11                    | 11 WBE                        | 8 (inc 4 FWB)              | 3                    | NR                   | 0                        | NR                       | CNS abnormalities                         |
| (1981)                   | Retrospective                   |                        |                                                                                                                              |                 |                       | 3 TPE                         |                            |                      |                      |                          |                          | MAHA                                      |
| Byrnes (1981)            | Observational;                  | NR                     | Multicentre (NR)                                                                                                             | USA,            | 18                    | 18 TPE                        | 1                          | 0                    | NR                   | 5                        | NR                       | MAHA                                      |
|                          | retrospective                   |                        |                                                                                                                              | S. America      | _                     |                               |                            |                      |                      |                          |                          |                                           |
| Liu et al (1986)         | Observational;                  | NR                     | Single centre                                                                                                                | USA             | 8                     | 8 TPE                         | 7                          | 0                    | NR                   | 1                        | NR                       | CNS abnormalities,                        |
|                          | venuspective                    |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | MAILA,<br>thromboutononio                 |
|                          |                                 | 1001 0001              | -                                                                                                                            | 1011            | Ļ                     |                               |                            |                      | E.                   |                          |                          | unrombocytopenia                          |
| Gordon <i>et al</i>      | Retrospective                   | 1982–1986              | Single centre                                                                                                                | USA             | 15                    | 15 TPE                        | 2                          | 1                    | NR                   | $\omega$                 | NR                       | Thrombocytopenia,                         |
| (1987)                   | observational                   |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | MAHA, neurology                           |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | OR fever and renal                        |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | abnormalities                             |
| Rose and Eldor           | Observational;                  | 1977–1985              | Multicentre (15)                                                                                                             | Israel &        | 38                    | 37                            | 14                         | Ŋ                    | NR                   | 1                        | NR                       | Plt count <100 $\times$ 10 <sup>9</sup> / |
| (1987)*                  | Retrospective                   |                        |                                                                                                                              | USA             |                       |                               |                            |                      |                      |                          |                          | l, MAHA, neurology                        |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | (major criteria)                          |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | Fever, renal                              |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | abnormalities                             |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | supportive                                |
| McCarthy et al<br>(1994) | Observational;<br>Retrospective | 1973–1994              | Single centre                                                                                                                | USA             | 55                    | 55 TPE                        | 25                         | 13                   | NR                   | 2                        | NR                       | NR                                        |
| Goodnough                | Observational;                  | NR§                    | Single centre                                                                                                                | USA             | 39                    | 39                            | 22                         | 10                   | NR                   | 3                        | NR                       | Plt count <150 $\times$ 10 <sup>9</sup> / |
| et al (1994)             | Retrospective                   |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | l, MAHA                                   |
| Egerman <i>et al</i>     | Observational;                  | Jan 1988 to Feb        | Single centre                                                                                                                | USA             | 11                    | 8 TPE                         | IJ.                        | 1                    | NR                   | 1                        | NR                       | Plt count <100 $\times$ 10 <sup>9</sup> / |
| (1996)                   | Retrospective                   | 1996                   |                                                                                                                              |                 |                       | 3 HPI                         |                            |                      |                      |                          |                          | l, MAHA                                   |
| Sarode et al             | Observational;                  | Jan 1985 to Jun        | Single centre                                                                                                                | USA             | 70                    | 68 TPE                        | 4                          | 0                    | NR                   | 10 (2 died               | NR                       | Plt count <100 $\times$ 10 <sup>9</sup> / |
| (1997)                   | Retrospective                   | 1995                   |                                                                                                                              |                 |                       |                               |                            |                      |                      | before TPE)              |                          | l, MAHA,                                  |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | neurological                              |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | symptoms and/or                           |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          | renal impairment                          |
| Coppo et al              | Observational;                  | 1989–2001              | Single centre                                                                                                                | France          | 37                    | IGH 91                        | 8                          | 1                    | NR                   | 4                        | NR                       | Plt count <100 $\times$ 10 <sup>9</sup> / |
| (2003) *†                | Retrospective                   |                        |                                                                                                                              |                 |                       | 18 TPE                        |                            |                      |                      |                          |                          | 1 & MAHA with no                          |
|                          |                                 |                        |                                                                                                                              |                 |                       |                               |                            |                      |                      |                          |                          |                                           |

<sup>© 2016</sup> John Wiley & Sons Ltd British Journal of Haematology, 2017, **176,** 365–394

| Study                | Type of study Study period | Study period | Centres involved Country | Country | patients | therapy | Tx | Plt Tx      | Plt Tx | Non-Plt Tx  | Non-Plt Tx | Non-Plt Tx Definition of TTP              |
|----------------------|----------------------------|--------------|--------------------------|---------|----------|---------|----|-------------|--------|-------------|------------|-------------------------------------------|
| Shamseddine          | Observational;             | 1980–2003    | Single centre            | Lebanon | 47       | 40 TPE  | 4  | 2           | NR     | 7           | NR         | Plt count $<100 \times 10^{9}/$           |
|                      |                            |              | ,                        |         |          |         |    |             |        |             |            |                                           |
| <i>et al</i> (2004)* | Retrospective              |              |                          |         |          | 1 HPI   |    |             |        |             |            | l & MAHA with no                          |
|                      |                            |              |                          |         |          |         |    |             |        |             |            | known cause                               |
| Swisher et al        | Observational;             | Nov 1995 to  | Single centre            | USA     | 54       | 49 TPE  | 33 | 8 (2 died   | 5 died | 5 (3 died   | 4 died     | Plt count <100 $\times$ 10 <sup>9</sup> / |
| (2009)*,‡            | Retrospective              | Dec 2007     |                          |         |          |         |    | before TPE) |        | before TPE) |            | l, MAHA                                   |

TTP associated with stem cell transplantation (15), cancer chemotherapy (12), or autoimmune disorders (35); or with ADAMTS13 level >10% (if measured; 95).

\*Reported for initial course of treatment until complete remission (as defined by the study), not for relapses or exacerbations

stem cell

<sup>t</sup>Excluded patients <10 years old (10); or at relapse; or with

'Excluded patients with TTP/HUS associated with

<sup>§</sup>Deaths reported that occurred when patients were not in complete remission

WBE:

transplantation, HIV, or metastatic cancer

| Gι | uid | el | ine |
|----|-----|----|-----|
|    |     |    |     |

Table IX. Data from SHOT Annual Report 2013 (Bolton-Maggs et al, 2014).

| Adverse event                                                      | Estimated risk per unit of platelets in the UK      |
|--------------------------------------------------------------------|-----------------------------------------------------|
| Febrile non-haemolytic<br>transfusion reaction (excluding<br>mild) | 1 in 6000                                           |
| Allergic (excluding mild)                                          | 1 in 6000                                           |
| Bacterial sepsis                                                   | Rare since introduction of bacterial screening 2010 |
| Transfusion-related acute lung<br>injury (TRALI)                   | Less than 1 in 1 000 000                            |
| Haemolysis from ABO incompatible plasma                            | 1 in 600 000                                        |
| Hepatitis B infection                                              | 1 in 1 000 000                                      |
| Hepatitis C infection                                              | 1 in 30 000 000                                     |
| Human immunodeficiency<br>(HIV) infection                          | 1 in 7 000 000                                      |

- It is acceptable to use ABO incompatible platelets to reduce wastage. Units tested and negative for high titre haemagglutinins and non-group O platelets are associated with a lower risk of haemolysis. Pooled platelets suspended in PAS would also be expected to reduce this risk. (1B).
- RhD negative girls or women of childbearing potential should receive RhD negative platelets. If unavailable, RhD positive platelets can be given with anti-D prophylaxis. (1B).
- For RhD negative boys under 18 years of age, those who already have anti-D antibodies and transfusion-dependant adults, the platelets of choice are RhD negative. RhD positive platelets should be given if RhD negative platelets are unavailable or to prevent wastage of RhD positive components. Anti-D prophylaxis is not required (1B).
- In patients with a history of allergic transfusion reactions, apart from mild, use platelets suspended in PAS. If reactions continue or are severe, washed platelets (resuspended in 100% PAS) may be required (1B).
- All clinical areas where platelet transfusions are administered should have access to guidance on the investigation and management of acute transfusion reactions to blood and blood components. We recommend these are based on BCSH guidance (Tinegate et al, 2012) (1A).

# **Platelet refractoriness**

Refractoriness to platelet transfusion has been studied in a recent review by an international panel using two systematic search strategies (Pavenski et al, 2013; Vassallo et al, 2014) and standardised methods to develop recommendations (Nahirniak et al, 2015). Non-immune conditions, such as consumptive coagulopathy, sepsis and splenomegaly, are recognised as the most common cause of platelet

refractoriness, accounting for approximately 80% of cases (Doughty *et al*, 1994; Legler *et al*, 1997). Alloimmune refractoriness in a patient with thrombocytopenia due to bone marrow failure was defined as a 10-min to 1-h increment of less than  $5 \times 10^9/l$  on 2 consecutive occasions, using ABO-identical platelets and in the absence of predominantly non-immunological factors. The trials available to address ABO matching and refractoriness due to alloimmunisation were of overall low quality. There were 30 studies, including 1 RCT that considered HLA matching and 29 studies with no RCTs that considered cross-matched platelets.

### Recommendations

- ABO matched platelets should be used when available to maximise increments (2C)
- Patients with hypoproliferative thrombocytopenia who are refractory to platelet transfusions solely due to nonimmune factors should not receive HLA-selected platelet transfusion (2C)
- Patients with hypoproliferative thrombocytopenia who are refractory to platelet transfusions and have class I HLA antibodies should receive class I HLA-selected platelet transfusion (2C)
- Patients with hypoproliferative thrombocytopenia who continue to be refractory to HLA-selected platelet transfusions and have HPA antibodies should receive HPAselected platelet transfusion (2C)

• Patients with hypoproliferative thrombocytopenia who are not refractory to platelet transfusion should not receive HLA-selected or HPA-selected platelets (2C).

# Other alternatives or additions to platelet transfusion

# Antifibrinolytic agents

The antifibrinolytic agent TXA reduces mortality in trauma without increasing vascular events (Shakur et al, 2010), and reduces blood loss and transfusion requirements during surgery (Ker et al, 2012; Poeran et al, 2014). Recent National Institute for Health and Clinical Excellence (NICE) guidance contains a strong recommendation for the use of TXA in adults undergoing surgery when blood loss is expected to be greater than 500 ml (NICE 2015). A Cochrane review (Wardrop et al, 2013) examined antifibrinolytic agents and prophylactic platelet transfusion in patients with thrombocytopenia due to bone marrow failure. Of the three eligible studies, all noted a reduction in bleeding and platelet transfusion with antifibrinolytic usage; the review concluded that an appropriately powered RCT was required.

BCSH guidelines recommend short term TXA in thrombocytopenic patients with MDS with mucus membrane bleeding, advising caution in patients with ischaemic heart disease or haematuria (British Committee for Standards in

| Category 1                                                                                                                                                                                                                                                                                                                                     | Category 2                                                                                                                                                                                                                                                                                                                                | Category 3                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Massive haemorrhage and critical care                                                                                                                                                                                                                                                                                                          | Critical care                                                                                                                                                                                                                                                                                                                             | Surgery                                                                                                                               |
| Massive transfusion for any condition<br>including obstetrics, emergency surgery<br>and trauma, with on-going bleeding,<br>maintain platelet count $>50 \times 10^{9}$ /l. Aim<br>for platelet count $>100 \times 10^{9}$ /l if multiple<br>trauma or CNS trauma<br>Bleeding in the presence of acute DIC,<br>maintain $>50 \times 10^{9}$ /l. | Patients resuscitated following massive<br>transfusion with no on-going active<br>bleeding, maintain platelet count<br>$>50 \times 10^9$ /l<br><b>Surgery</b> Urgent but not emergency surgery<br>for a patient requiring platelet support<br><i>Transfusion triggers for invasive procedures</i><br>According to current BCSH guidelines | Elective, non-urgent surgery likely to<br>require platelet support for<br>thrombocytopenia or congenital/acquired<br>platelet defects |
| Bone marrow failure<br>Active bleeding associated with severe                                                                                                                                                                                                                                                                                  | Bone marrow failure<br>All other indications except those in                                                                                                                                                                                                                                                                              | Bone marrow failure Prophylactic<br>transfusion of stable patients following                                                          |
| thrombocytopenia or functional platelet<br>defects                                                                                                                                                                                                                                                                                             | category 1 or 3                                                                                                                                                                                                                                                                                                                           | autologous stem cell transplant.                                                                                                      |
| Immune thrombocytopenia if serious/life-                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| threatening bleeding                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| Neonates For neonatal alloimmune                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| thrombocytopenia or severe                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| thrombocytopenia in an otherwise well                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| neonate, platelet transfusions are required                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| when the platelet count falls to between                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| 20 and 30 $\times$ 10 <sup>9</sup> /l. Higher target levels                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| should be maintained if extremely low                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| birth weight or unwell/bleeding or intra-                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |
| cranial haemorrhage suspected/confirmed.                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |

Table X. Platelet transfusion in times of shortage.

DIC, disseminated intravascular coagulation; CNS, central nervous system

Haematology Blood Transfusion Task Force, 2003; Killick et al, 2014).

### Desmopressin

Desmopressin promotes coagulation by stimulating factor VIII release from endothelial stores and increasing von Willebrand factor activity. Two recent European guidelines regarding bleeding in trauma (Spahn *et al*, 2013) and perioperative bleeding (Kozek-Langenecker *et al*, 2013) advocate desmopressin to improve platelet function. In trauma, this is recommended for patients receiving aspirin and, in the perioperative setting, in patients with uraemia or inherited platelet defects.

### Fibrinogen

Fibrinogen concentrate is currently only licenced in the UK for congenital deficiency. It has been used to treat bleeding in surgical patients and was associated with reduced bleeding and blood product usage in a recent systematic review; however the included studies were small and at high risk of bias, thus more evidence is required (Wikkelsø *et al*, 2013). Two recent European guidelines (Kozek-Langenecker *et al*, 2013; Spahn *et al*, 2013) recommend using fibrinogen for haemorrhage where there is evidence of fibrinogen deficiency.

### Thrombopoietin receptor agonists and other therapies

Initial studies of Romiplostim for thrombocytopenia secondary to myelodysplastic syndrome (MDS)/non-Hodgkin lymphoma showed encouraging platelet count improvements (Sekeres *et al*, 2011; Greenberg *et al*, 2012; Wang *et al*, 2012); however, in 2011 a larger placebo controlled trial in low/intermediate 1 risk MDS patients was discontinued due to transient blast cell count increases (Kantarjian *et al*, 2012; Giagounidis *et al*, 2014).

Eltrombopag has also been used in small non-randomised studies in patients with advanced MDS/acute myeloid leukaemia and severe AA (Olnes *et al*, 2012); further studies are needed to assess the benefits/risks, including clonal progression. In elderly patients with aplastic anaemia, BCSH guidelines suggest the use of eltrombopag should be considered when all other treatment modalities have been explored (Killick *et al*, 2015).

A large randomised-controlled study using Eltrombopag pre-procedure in patients with chronic liver disease was terminated early because of an increased incidence of portal vein thrombosis (Afdhal *et al*, 2012).

Both Romiplostim and Eltrombopag are licenced and NICE-approved for treatment in ITP. A recent retrospective observational study a reported that a sustained response was achieved in at least 29% of cases after temporary use of these agents with a median follow-up of more than a year. (Mahévas *et al*, 2014).

Erythropoietin has been observed to reduce both red cell and platelet transfusion requirements in patients following HSCT and iron chelation has been reported to improve haematopoiesis in patients with iron overload (Michallet *et al*, 2013).

### Recommendations

- Administer TXA early in trauma patients who are bleeding/at risk of bleeding (1A)
- Use TXA in surgical patients expected to have greater than a 500 ml blood loss, unless contraindications exist (1A)
- Consider TXA as an alternative or in addition to therapeutic platelet transfusion in patients with chronic thrombocytopenia caused by bone marrow failure (2B)
- In severe perioperative bleeding/bleeding associated with major trauma, give fibrinogen (concentrate or cryoprecipitate) if plasma fibrinogen concentration is <1.5 g/l or if signs of a functional fibrinogen deficit are seen on near patient testing (1C).
- Use thrombopoietin receptor agonists according to international guidelines in ITP. At present there is insufficient evidence to recommend these agents in other patient categories (1A).

### Platelet transfusion in times of shortage

Table X provides general guidance for the use of platelet transfusions in the context of reduced availability. Category 1 patients are those with the greatest clinical need for platelet support and therefore should be given priority when considering allocation. Category 3 patients are the lowest priority and should be the first to have platelet transfusions withheld. Patients who have had an autologous stem cell transplant have been included in Category 3, based on evidence from two large RCTs (Wandt *et al*, 2012; Stanworth *et al*, 2013a) (Table II) and from consideration of the risks associated with platelet transfusions (described earlier).

### Acknowledgement

We would like to thank Professor Mike Murphy, Consultant Haematologist for his review and revision of this document.

### Author contributions

LE, JB, SS, AM and HT performed literature reviews and wrote initial draft sections of the text. All of the authors were involved in formulation, writing and approval of the final version of the manuscript. The authors would like to thank BCSH sounding board members of the Haemato-oncology, General Haematology, Haemostasis and Thrombosis, and

Transfusion Task Forces for their comments and subsequent revision of these guidelines.

### **Declaration of interests**

All authors have made a declaration of interests to the BCSH and Task Force Chairs and may be viewed on request. In summary, none of the authors have any conflicts of interest to declare.

### **Review process**

Members of the writing group will inform the writing group Chair if any new pertinent evidence becomes available that would alter the strength of the recommendations made in this document or render it obsolete. The document will be archived and removed from the BCSH current guidelines website if it becomes obsolete. If new recommendations are made an addendum will be published on the BCSH guidelines website

### References

- Afdhal, N.H., Giannini, E.G., Tayyab, G., Mohsin, A., Lee, J.W., Andriulli, A., Jeffers, L., McHutchison, J., Chen, P.J., Han, K.H., Campbell, F., Hyde, D., Brainsky, A. & Theodore, D. (2012) Eltrombopag before procedures in patients with cirrhosis and thrombocytopenia. *New England Journal of Medicine*, **367**, 716–724.
- Ahn, S.W., Shim, J.K., Youn, Y.N., Song, J.W., Yang, S.Y., Chung, S.C. & Kwak, Y.L. (2012) Effect of tranexamic acid on transfusion requirement in dual antiplatelet-treated anemic patients undergoing off-pump coronary artery bypass graft surgery. *Circulation Journal*, 76, 96–101.
- Assir, M.Z.K., Kamran, U., Ahmad, H.I., Bashir, S., Mansoor, H., Anees, S.B. & Akram, J. (2013) Effectiveness of platelet transfusion in dengue fever: a randomized controlled trial. *Transfusion Medicine and Hemotherapy*, **40**, 362–368.
- Babcock, R.B., Dumper, C.W. & Scharfman, W.B. (1976) Heparin-induced immune thrombocytopenia. New England Journal of Medicine, 295, 237–241.
- Baharoglu, M.I., Cordonnier, C., Salman, R.A.-S., de Gans, K., Koopman, M.M., Brand, A., Majoie, C.B., Beenen, L.F., Marquering, H.A., Vermeulen, M., Nederkoorn, P.J., de Haan, R.J. & Roos, Y.B. (2016) Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. *The Lancet*, doi:10.1016/s0140-6736(16)30392-0
- Bain, B. (2003) Bone marrow biopsy morbidity and mortality. *British Journal of Haematology*, 121, 949–951.
- Bain, B.J. (2004) Bone marrow biopsy morbidity and mortality: 2002 data. *Clinical and Laboratory Haematology*, 26, 315–318.

# Disclaimer

While the advice and information in this guidance is believed to be true and accurate at the time of going to press, neither the authors, the British Committee for Standard in Haematology nor the publishers accept any legal responsibility for the content of this guidance.

### **Supporting Information**

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Haematology audit template.

- Bain, B.J. (2005) Bone marrow biopsy morbidity: review of 2003. *Journal of Clinical Pathology*, 58, 406–408.
- Bain, B.J. (2006) Morbidity associated with bone marrow aspiration and trephine biopsy - a review of UK data for 2004. *Haematologica*, 91, 1293–1294.
- Bakdash, S., Lyons, J.M., Bastacky, S.I., Pezzone, M.A., McGee, J.B., Schoen, R.E., Regueiro, M., Lee, K.K. & Bontempo, F.A. (2008) Management of persistent gastric bleeding in a patient with Glanzmann's thrombasthenia. *American Journal* of Hematology, 83, 411–415.
- Barrera, R., Mina, B., Huang, Y. & Groeger, J.S. (1996) Acute complications of central line placement in profoundly thrombocytopenic cancer patients. *Cancer*, 78, 2025–2030.
- Batchelor, J.S. & Grayson, A. (2012) A meta-analysis to determine the effect on survival of platelet transfusions in patients with either spontaneous or traumatic antiplatelet medication-associated intracranial haemorrhage. *BMJ Open*, 2, e000588.
- Baumann, M., Menitove, J., Aster, R. & Anderson, T. (1986) Urgent treatment of idiopathic thrombocytopenic purpura with single-dose gammaglobulin infusion followed by platelet transfusion. *Annals of Internal Medicine*, **104**, 808–809.
- Berseus, O., Boman, K., Nessen, S.C. & Westerberg, L.A. (2013) Risks of hemolysis due to anti-A and anti-B caused by the transfusion of blood or blood components containing ABO-incompatible plasma. *Transfusion*, 53, Suppl. 1 114S– 123S.
- Bleggi-Torres, L.F., Werner, B., Gasparetto, E.L., de Medeiros, B.C., Pasquini, R. & de Medeiros, C.R. (2002) Intracranial hemorrhage following bone marrow transplantation: an autopsy study of 58 patients. *Bone Marrow Transplantation*, 29, 29–32.
- Blumberg, N., Refaai, M. & Heal, J. (2015) ABO matching of platelet transfusions - "Start

Making Sense". "As we get older, and stop making sense.." - The Talking Heads (1984). *Blood Transfusion*, **13**, 347–350.

- Bolton-Maggs, P., Chalmers, E., Collins, P., Harrison, P., Kitchen, S., Liesner, R., Minford, A., Mumford, A., Parapia, L., Perry, D., Watson, S., Wilde, J. & Williams, M. (2006) A review of inherited platelet disorders with guidelines for their management on behalf of UKHCDO. *British Journal of Haematology*, **135**, 603–633.
- Bolton-Maggs, P.H.B., (Ed) Poles, D., Watt, A. & Thomas, D. on behalf of the Serious Hazards of Transfusion (SHOT) Steering Group. (2014) The 2013 Annual SHOT Report. Copyright © Serious Hazards of Transfusion (SHOT) 2014. Available at: http://www.shotuk.org/wp-content/ uploads/2013.pdf (accessed 01 November 2015).
- Bolton-Maggs, P.H.B., (Ed) Poles, D., Watt, A. & Thomas, D.; on behalf of the Serious Hazards of Transfusion (SHOT) Steering Group. (2015). The 2014 Annual SHOT Report. Copyright © Serious Hazards of Transfusion (SHOT) 2015. Available at: http://www.shotuk.org/wp-content/ uploads/report-2014.pdf (accessed 01 November 2015).
- Briggs, C., Hart, D., Kunka, S., Oguni, S. & Machin, S.J. (2006) Immature platelet fraction measurement: a future guide to platelet transfusion requirement after haematopoietic stem cell transplantation. *Transfusion Medicine (Oxford, England)*, 16, 101–109.
- British Committee for Standards in Haematology Blood Transfusion Task Force. (2003) Guidelines for the use of platelet transfusions. *British Journal of Haematology*, **122**, 10–23.
- British Society of Gastroenterologists (BSG). (2004) Guidelines on the use of Liver Biopsy in Clinical Practice. Available at: http:// www.bsg.org.uk/images/stories/docs/clinical/ guidelines/liver/liver\_biopsy.pdf (accessed 01 December 2015).

- Byrnes, J.J. (1981) Plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Seminars in Thrombosis and Hemostasis, 7, 9–14.
- Cameron, B., Rock, G., Olberg, B. & Neurath, D. (2007) Evaluation of platelet transfusion triggers in a tertiary-care hospital. *Transfusion*, 47, 206– 211.
- Carr, J.M., Kruskall, M.S., Kaye, J.A. & Robinson, S.H. (1986) Efficacy of platelet transfusions in immune thrombocytopenia. *The American Journal of Medicine*, **80**, 1051–1054.
- Carr, E., Jayabose, S., Stringel, G., Slim, M., Ozkaynak, M.F., Tugal, O. & Sandoval, C. (2006) The safety of central line placement prior to treatment of pediatric acute lymphoblastic leukemia. *Pediatric Blood & Cancer*, **47**, 886– 888.
- Cases, A., Escolar, G., Reverter, J.C., Ordinas, A., Lopez-Pedret, J., Revert, L. & Castillo, R. (1992)
  Recombinant human erythropoietin treatment improves platelet function in uremic patients. *Kidney International*, 42, 668–672.
- Cavanna, L., Civardi, G., Vallisa, D., Di Nunzio, C., Cappucciati, L., Berte, R., Cordani, M.R., Lazzaro, A., Cremona, G., Biasini, C., Muroni, M., Mordenti, P., Gorgni, S., Zaffignani, E., Ambroggi, M., Bidin, L., Palladino, M.A., Rodino, C. & Tibaldi, L. (2010) Ultrasoundguided central venous catheterization in cancer patients improves the success rate of cannulation and reduces mechanical complications: a prospective observational study of 1,978 consecutive catheterizations. World Journal of Surgical Oncology, 8, 91.
- Cazenave, J.P., Isola, H., Waller, C., Mendel, I., Kientz, D., Laforet, M., Raidot, J.P., Kandel, G., Wiesel, M.L. & Corash, L. (2011) Use of additive solutions and pathogen inactivation treatment of platelet components in a regional blood center: impact on patient outcomes and component utilization during a 3-year period. *Transfusion*, **51**, 622–629.
- Chandramouli, N.B. & Rodgers, G.M. (2000) Prolonged immunoglobulin and platelet infusion for treatment of immune thrombocytopenia. *American Journal of Hematology*, **65**, 85–86.
- Charlton, A., Wallis, J., Robertson, J., Watson, D., Iqbal, A. & Tinegate, H. (2014) Where did platelets go in 2012? A survey of platelet transfusion practice in the north of England. *Transfusion Medicine*, 24, 213–218.
- Chen, C.Y., Tai, C.H., Tsay, W., Chen, P.Y. & Tien, H.F. (2009) Prediction of fatal intracranial hemorrhage in patients with acute myeloid leukemia. *Annals of Oncology*, **20**, 1100–1104.
- Cid, J., Lozano, M., Ziman, A., West, K.A., O'Brien, K.L., Murphy, M.F., Wendel, S., Vazquez, A., Ortin, X., Hervig, T.A., Delaney, M., Flegel, W.A. & Yazer, M.H.; Biomedical Excellence for Safer Transfusion, c. (2015) Low frequency of anti-D alloimmunization following D+ platelet transfusion: the Anti-D Alloimmunization after D-incompatible Platelet Transfusions (ADAPT) study. *British Journal of Haematology*, **168**, 598–603.

- Cimo, P.L., Moake, J.L., Weinger, R.S., Ben-Menachem, Y.B. & Khalil, K.G. (1979) Heparininduced thrombocytopenia: association with a platelet aggregating factor and arterial thromboses. *American Journal of Hematology*, **6**, 125– 133.
- Cluzel, P., Martinez, F., Bellin, M.F., Michalik, Y., Beaufils, H., Jouanneau, C., Lucidarme, O., Deray, G. & Grenier, P.A. (2000) Transjugular versus percutaneous renal biopsy for the diagnosis of parenchymal disease: comparison of sampling effectiveness and complications. *Radiology*, 215, 689–693.
- Cohn, C.S., Stubbs, J., Schwartz, J., Francis, R., Goss, C., Cushing, M., Shaz, B., Mair, D., Brantigan, B. & Heaton, W.A. (2014) A comparison of adverse reaction rates for PAS C versus plasma platelet units. *Transfusion*, 54, 1927– 1934.
- Coppo, P., Bussel, A., Charrier, S., Adrie, C., Galicier, L., Boulanger, E., Veyradier, A., Leblanc, T., Alberti, C., Azoulay, E., Le Gall, J.-R. & Schlemmer, B. (2003) High-dose plasma infusion versus plasma exchange as early treatment of thrombotic thrombocytopenic purpura/hemolytic-uremic syndrome. *Medicine*, 82, 27–38.
- Crighton, G., Estcourt, L., Wood, E., Stanworth, S., Trivella, M., Doree, C., Tinmouth, A. & Murphy, M. (2015) A therapeutic-only versus prophylactic platelet transfusion strategy for preventing bleeding in patients with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation. *Cochrane Database* of Systematic Reviews, 9, CD010981.
- De la Salle, B.J., McTaggart, P.N., Briggs, C., Harrison, P., Doré, C.J., Longair, I., Machin, S.J. & Hyde, K. (2012) The accuracy of platelet counting in thrombocytopenic blood samples distributed by the UK national external quality assessment scheme for general haematology. *American Journal* of Clinical Pathology, **137**, 65–74.
- De la Serna, J., Montesinos, P., Vellenga, E., Rayon, C., Parody, R., Leon, A., Esteve, J., Bergua, J.M., Milone, G., Deben, G., Rivas, C., Gonzalez, M., Tormo, M., az-Mediavilla, J., Gonzalez, J.D., Negri, S., Amutio, E., Brunet, S., Lowenberg, B. & Sanz, M.A. (2008) Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. *Blood*, 111, 3395–3402.
- Della Vigna, P., Monfardini, L., Bonomo, G., Curigliano, G., Agazzi, A., Bellomi, M. & Orsi, F. (2009) Coagulation disorders in patients with cancer: nontunneled central venous catheter placement with US guidance–a single-institution retrospective analysis. *Radiology*, 253, 249–252.
- Devalia, V. (2013) Annual British Society for Haematology confidential survey of bone marrow examination associated adverse events 2011. British Journal of Haematology, 161, 22–23.
- Doerfler, M.E., Kaufman, B. & Goldenberg, A.S. (1996) Central venous catheter placement in patients with disorders of hemostasis. *Chest*, 110, 185–188.

- Doughty, H., Murphy, M., Metcalfe, P., Rohatiner, A., Lister, T. & Waters, A. (1994) Relative importance of immune and non-immune causes of platelet refractoriness. *Vox Sanguinis*, 66, 200–205.
- Duffy, S.M. & Coyle, T.E. (2013) Platelet transfusions and bleeding complications associated with plasma exchange catheter placement in patients with presumed thrombotic thrombocytopenic purpura. *Journal of Clinical Apheresis*, 28, 356– 358.
- Dunbar, N.M., Katus, M.C., Freeman, C.M. & Szczepiorkowski, Z.M. (2015) Easier said than done: ABO compatibility and D matching in apheresis platelet transfusions. *Transfusion*, 55, 1882–1888.
- Egerman, R.S., Witlin, A.G., Friedman, S.A. & Sibai, B.M. (1996) Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in pregnancy: review of 11 cases. *American Journal of Obstetrics and Gynecology*, **175**, 950–956.
- Eldor, A., Avitzour, M., Or, R., Hanna, R. & Penchas, S. (1982) Prediction of haemorrhagic diathesis in thrombocytopenia by mean platelet volume. *British Medical Journal (Clinical Research Ed)*, 285, 397–400.
- Estcourt, L. (2014) Why has demand for platelet components increased? A review. [Review]. *Transfusion Medicine*, 24, 260–268.
- Estcourt, L.J., Stanworth, S.J. & Murphy, M.F. (2011) Platelet transfusions for patients with haematological malignancies: who needs them? *British Journal of Haematology*, **154**, 425–440.
- Estcourt, L.J., Birchall, J., Lowe, D., Grant-Casey, J., Rowley, M. & Murphy, M.F. (2012a) Platelet transfusions in haematology patients: are we using them appropriately? *Vox Sanguinis*, **103**, 284–293.
- Estcourt, L., Stanworth, S., Doree, C., Hopewell, S., Murphy, M.F., Tinmouth, A. & Heddle, N. (2012b) Prophylactic platelet transfusion for prevention of bleeding in patients with haematological disorders after chemotherapy and stem cell transplantation. *Cochrane Database of Systematic Reviews (Online)*, 2012, CD004269.
- Estcourt, L.J., Curry, N.S., Simons, G.N., Jairath, V., Butler, C., Harrison, P., Stanworth, S.J. & Murphy, M.F. (2013) Platelet transfusion for the actively bleeding patient. In: Platelet Transfusion Therapy (eds. by Sweeney, J. & Lozano, M.), pp. 271–320. AABB Press, Bethesda, MD, USA.
- Estcourt, L., Gregg, R., Stanworth, S., Doree, C., Trivella, M., Murphy, M. & Tinmouth, A. (2014a) Alternative agents versus prophylactic platelet transfusion for preventing bleeding in patients with haematological disorders after chemotherapy or stem cell transplantation (protocol). *Cochrane Database of Systematic Reviews* (*Online*), **2014**, CD010982.
- Estcourt, L., Stanworth, S., Doree, C., Trivella, M., Hopewell, S., Murphy, M. & Tinmouth, A. (2014b) Comparison of different platelet count thresholds to guide administration of prophylactic platelet transfusion for preventing bleeding in patients with haematological disorders after

chemotherapy or stem cell transplantation (protocol). *Cochrane Database of Systematic Reviews* (*Online*), **2014**, CD010983.

- Estcourt, L., Stanworth, S., Doree, C., Trivella, M., Hopewell, S., Murphy, M. & Tinmouth, A. (2014c) Different doses of prophylactic platelet transfusion for preventing bleeding in patients with haematological disorders after chemotherapy or stem cell transplantation. *Cochrane Database of Systematic Reviews (Online)*, 2014, CD010984.
- Estcourt, L.J., Stanworth, S., Doree, C., Trivella, M., Hopewell, S., Blanco, P. & Murphy, M.F. (2015) Different doses of prophylactic platelet transfusion for preventing bleeding in people with haematological disorders after myelosuppressive chemotherapy or stem cell transplantation. *Cochrane Database of Systematic Reviews* (*Online*), 2015, CD010984.
- European Blood Alliance. (2015). European Blood Alliance Annual Report 2015. Available at: http://www.europeanbloodalliance.eu/ wp-content/uploads/2016/05/EBA\_annual\_report\_ 2015.pdf (accessed 06 June 2016).
- European Committee (Partial Agreement) on Blood Transfusion CD-P-TS. (2016). The collection, testing and use of blood and blood components in Europe, EDQM 2013 report. Available at: https://www.edqm.eu/sites/default/files/the\_collection\_testing\_and\_use\_of\_ blood\_and\_blood\_components\_in\_europe\_2013. pdf (accessed 06 June 2016).
- Fisher, N. & Mutimer, D. (1999) Central venous cannulation in patients with liver disease and coaulopathy - a prospective audit. *Intensive Care Medicine*, 25, 481–485.
- Foster, P.F., Moore, L.R., Sankary, H.N., Hart, M.E., Ashmann, M.K. & Williams, J.W. (1992) Central venous catheterization in patients with coagulopathy. *Archives of Surgery*, **127**, 273–275.
- Friedmann, A.M., Sengul, H., Lehmann, H., Schwartz, C. & Goodman, S. (2002) Do basic laboratory tests or clinical observations predict bleeding in thrombocytopenic oncology patients? A reevaluation of prophylactic platelet transfusions. *Transfusion Medicine Reviews*, 16, 34–45.
- Gami, A.S., Hayman, S.R., Grande, J.P. & Garovic, V.D. (2005) Incidence and prognosis of acute heart failure in the thrombotic microangiopathies. *The American Journal of Medicine*, 118, 544–547.
- Gerber, D.E., Segal, J.B., Levy, M.Y., Kane, J., Jones, R.J. & Streiff, M.B. (2008) The incidence of and risk factors for venous thromboembolism (VTE) and bleeding among 1514 patients undergoing hematopoietic stem cell transplantation: implications for VTE prevention. *Blood*, **112**, 504–510.
- Gerday, E., Baer, V.L., Lambert, D.K., Paul, D.A., Sola-Visner, M.C., Pysher, T.J. & Christensen, R.D. (2009) Testing platelet mass versus platelet count to guide platelet transfusions in the neonatal intensive care unit. *Transfusion*, 49, 2034–2039.
- Giagounidis, A., Mufti, G.J., Fenaux, P., Sekeres, M.A., Szer, J., Platzbecker, U., Kuendgen, A.,

Gaidano, G., Wiktor-Jedrzejczak, W., Hu, K., Woodard, P., Yang, A.S. & Kantarjian, H.M. (2014) Results of a randomized, double-blind study of romiplostim versus placebo in patients with low/intermediate-1-risk myelodysplastic syndrome and thrombocytopenia. *Cancer*, **120**, 1838–1846.

- Godier, A., Taylor, G. & Gaussem, P. (2015) Inefficacy of platelet transfusion to reverse ticagrelor. *New England Journal of Medicine*, **372**, 196–197.
- Goerge, T., Ho-Tin-Noe, B., Carbo, C., Benarafa, C., Remold-O'Donnell, E., Zhao, B.Q., Cifuni, S.M. & Wagner, D.D. (2008) Inflammation induces hemorrhage in thrombocytopenia. *Blood*, 111, 4958–4964.
- Goodnough, L.T., Strasburg, D., Verbrugge, D. & Fisher, C. (1994) Morbidity and mortality in adults with "idiopathic" thrombotic thrombocytopenic purpura/hemolytic uremic syndrome. *Journal of Intensive Care Medicine*, 9, 167–171.
- Gordon, L.I., Kwaan, H.C. & Rossi, E.C. (1987) Deleterious effects of platelet transfusions and recovery thrombocytosis in patients with thrombotic microangiopathy. *Seminars in Hematology*, 24, 194–201.
- Gottschall, J.L., Pisciotta, A.V., Darin, J., Hussey, C.V. & Aster, R.H. (1981) Thrombotic thrombocytopenic purpura: experience with whole blood exchange transfusion. *Seminars in Thrombosis and Hemostasis*, 7, 25–32.
- Greenberg, P.L., Garcia-Manero, G., Moore, M., Damon, L., Roboz, G., Hu, K., Yang, A.S. & Franklin, J. (2012) A randomized controlled trial of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome (MDS) receiving decitabine. *Leukemia & Lymphoma*, 54, 321–328.
- Greeno, E., McCullough, J. & Weisdorf, D. (2007) Platelet utilization and the transfusion trigger: a prospective analysis. *Transfusion*, **47**, 201–205.
- Haas, B., Chittams, J.L. & Trerotola, S.O. (2010) Large-bore tunneled central venous catheter insertion in patients with coagulopathy. *Journal* of Vascular and Interventional Radiology, 21, 212–217.
- Hansson, E.C., Shams Hakimi, C., Astrom-Olsson, K., Hesse, C., Wallen, H., Dellborg, M., Albertsson, P. & Jeppsson, A. (2014) Effects of *ex vivo* platelet supplementation on platelet aggregability in blood samples from patients treated with acetylsalicylic acid, clopidogrel, or ticagrelor. *British Journal of Anaesthesia*, **112**, 570–575.
- Harris, A., Atterbury, C., Chaffe, B., Elliott, C., Hawkins, T., Hennem, S., Howell, C., Jones, J., Murray, S., New, H., Norfolk, D., Pirie, L., Russell, J. & Taylor, C. (2009) Guideline on the administration of blood components. http://www.b-sh.org.uk/media/5152/admin\_blood\_componentsbcsh-05012010.pdf Accessed 10 January 2016.
- Hayward, C.P.M., Rao, A.K. & Cattaneo, M. (2006) Congenital platelet disorders: overview of their mechanisms, diagnostic evaluation and treatment. *Haemophilia*, **12**, 128–136.

- Hedges, S.J., Dehoney, S.B., Hooper, J.S., Amanzadeh, J. & Busti, A.J. (2007) Evidence-based treatment recommendations for uremic bleeding. *Nature Clinical Practice Nephrology*, 3, 138– 153.
- Hind, D., Calvert, N., McWilliams, R., Davidson, A., Paisley, S., Beverley, C. & Thomas, S. (2003) Ultrasonic locating devices for central venous cannulation: meta-analysis. *BMJ*, **327**, 361.
- Hong Pheng Loh, A. & Hon Chui, C. (2007) Port-A-Cath insertions in acute leukemia: does thrombocytopenia affect morbidity? *Journal of Pediatric Surgery*, 42, 1180–1184.
- Hopkins, C.K. & Goldfinger, D. (2008) Platelet transfusions in heparin-induced thrombocytopenia: a report of four cases and review of the literature. *Transfusion*, 48, 2128–2132.
- Hunt, B.J., Allard, S., Keeling, D., Norfolk, D., Stanworth, S.J. & Pendry, K.; British Committee for Standards in, H. (2015) A practical guideline for the haematological management of major haemorrhage. *British Journal of Haematology*, 170, 788–803.
- Jones, A., Birchall, J., Roberts, P., Davies, L., Webb, M., Cooke, S.J., Mead, K., MacRate, E., Thompson, P. & McMahon, J. (2013) A survey of where and why platelets are used in hospitals in the South West region of England. *Transfusion Medicine*, 23, PO34.
- Kacker, S., Ness, P.M., Savage, W.J., Frick, K.D., McCullough, J., King, K.E. & Tobian, A.A. (2013) The cost-effectiveness of platelet additive solution to prevent allergic transfusion reactions. *Transfusion*, **53**, 2609–2618.
- Kalambokis, G., Manousou, P., Vibhakorn, S., Marelli, L., Cholongitas, E., Senzolo, M., Patch, D. & Burroughs, A.K. (2007) Transjugular liver biopsy – Indications, adequacy, quality of specimens, and complications – A systematic review. *Journal of Hepatology*, **47**, 284–294.
- Kantarjian, H.M., Mufti, G.J., Fenaux, P., Sekeres, M.A., Szer, J., Platzbecker, U., Kuendgen, A., Gaidano, G., Wiktor-Jedrzejczak, W., Bennett, J.M., Meibohm, A., Yang, A.S. & Giagounidis, A. (2012) Treatment with the thrombopoietin (TPO)-receptor agonist romiplostim in thrombocytopenic patients (PTS) with low or intermediate-1 (INT-1) risk myelodysplastic syndrome (MDS): follow-up aml and survival results of a randomized, double-blind, placebo (PBO)-controlled study. *Blood*, **120**, 421.
- Kaufman, R.M., Djulbegovic, B., Gernsheimer, T., Kleinman, S., Tinmouth, A.T., Capocelli, K.E., Cipolle, M.D., Cohn, C.S., Fung, M.K., Grossman, B.J., Mintz, P.D., O'Malley, B.A., Sesok-Pizzini, D.A., Shander, A., Stack, G.E., Webert, K.E., Weinstein, R., Welch, B.G., Whitman, G.J., Wong, E.C. & Tobian, A.A. (2015) Platelet transfusion: a clinical practice guideline from the AABB. Annals of Internal Medicine, 162, 205–213.
- Ker, K., Edwards, P., Perel, P., Shakur, H. & Roberts, I. (2012) Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. *BMJ*, **344**, e3054.

- Killick, S., Carter, C., Culligan, D., Dalley, C., Das-Gupta, E., Drummond, M., Enright, H., Jones, G., Kell, J., Mills, J., Mufti, G., Parker, J., Raj, K., Sternberg, A., Vyas, P. & Bowen, D. (2014) Guidelines for the diagnosis and management of adult myelodysplastic syndromes. *British Journal* of Haematology, 164, 503–525.
- Killick, S.B., Bown, N., Cavenagh, J., Dokal, I., Foukaneli, T., Hill, A., Hillmen, P., Ireland, R., Kulasekararaj, A., Mufti, G., Snowden, J.A., Samarasinghe, S., Wood, A. & Marsh, J.C.; British Society for Standards in, H. (2015) Guidelines for the diagnosis and management of adult aplastic anaemia. *British Journal of Haematology*, 164, 503–525.
- Kim, H., Lee, J.H., Choi, S.J., Kim, W.K., Lee, J.S. & Lee, K.H. (2004) Analysis of fatal intracranial hemorrhage in 792 acute leukemia patients. *Haematologica*, **89**, 622–624.
- Kitazawa, J., Nollet, K., Morioka, H., Tanaka, K., Inomata, M., Kubuki, Y. & Ohto, H. (2011) Non-D Rh antibodies appearing after apheresis platelet transfusion: stimulation by red cells or microparticles? *Vox Sanguinis*, **100**, 395–400.
- Kozek-Langenecker, S.A., Afshari, A., Albaladejo, P., Santullano, C.A., De Robertis, E., Filipescu, D.C., Fries, D., Gorlinger, K., Haas, T., Imberger, G., Jacob, M., Lance, M., Llau, J., Mallett, S., Meier, J., Rahe-Meyer, N., Samama, C.M., Smith, A., Solomon, C., Van der Linden, P., Wikkelso, A.J., Wouters, P. & Wyffels, P. (2013) Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. European Journal of Anaesthesiology, **30**, 270–382.
- Kumar, A., Mhaskar, R., Grossman, B.J., Kaufman, R.M., Tobian, A.A., Kleinman, S., Gernsheimer, T., Tinmouth, A.T. & Djulbegovic, B. (2014) Platelet transfusion: a systematic review of the clinical evidence. *Transfusion*, 55, 1116–1127.
- Lawrence, J., Yomtovian, R., Hammons, T., Masarik, S., Chongkolwatana, V., Cregar, R., Manka, A. & Lazarus, H. (2001) Lowering the prophylactic platelet transfusion threshold: a prospective analysis. *Leukemia & Lymphoma*, 41, 67–76.
- Legler, T., Fischer, I., Dittmann, J., Simson, G., Lynen, R., Humpe, A., Riggert, J., Schleyer, E., Kern, W., Hiddemann, W. & Köhler, M. (1997) Frequency and causes of refractoriness in multiply transfused patients. *Annals of Hematology*, 74, 185–189.
- Li, C., Hirsh, J., Xie, C., Johnston, M.A. & Eikelboom, J.W. (2012) Reversal of the anti-platelet effects of aspirin and clopidogrel. *Journal of Thrombosis and Haemostasis*, **10**, 521–528.
- Lieberman, L., Sholapur, N.S., Bercovitz, R.S., Heddle, N., Stanworth, S. & Arnold, D.M. (2013) Platelet transfusions in critically ill patients with thrombocytopenia: an evidencebased review. *Blood*, **123**, 1146–1151.
- Linkins, L.A., Dans, A.L., Moores, L.K., Bona, R., Davidson, B.L., Schulman, S. & Crowther, M. (2012) Treatment and prevention of heparininduced thrombocytopenia: antithrombotic

therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest*, **141**, e495S–e530S.

- Liu, E.T., Linker, C.A. & Shuman, M.A. (1986) Management of treatment failures in thrombotic thrombocytopenic purpura. *American Journal of Hematology*, 23, 347–361.
- Liumbruno, G., Bennardello, F., Lattanzio, A., Piccoli, P. & Rossetti, G. (2009) Recommendations for the transfusion of plasma and platelets. *Blood Transfusion*, 7, 132–150.
- Liumbruno, G.M., Bennardello, F., Lattanzio, A., Piccoli, P. & Rossetti, G.; Italian Society of Transfusion, M. & Immunohaematology Working, P. (2011) Recommendations for the transfusion management of patients in the perioperative period. I. The pre-operative period. *Blood Transfusion*, 9, 19–40.
- Lyons, G. & Hunt, B. (2010. Platelet counts and Obstetric Analgesia & Anaesthesia. Obstetric Anaesthetists Association. Available at: http:// www.oaa-naes.ac.uk/assets/\_managed/editor/File/ Guidelines/Coagulation/platelet\_counts\_and\_oa\_ lyons\_hunt.pdf (accessed 30 November 2015).
- Mahévas, M., Fain, O., Ebbo, M., Roudot-Thoraval, F., Limal, N., Khellaf, M., Schleinitz, N., Bierling, P., Languille, L., Godeau, B. & Michel, M. (2014) The temporary use of thrombopoietin-receptor agonists may induce a prolonged remission in adult chronic immune thrombocytopenia. Results of a French observational study. *British Journal of Haematology*, **165**, 865–869.
- Makris, M., Van Veen, J.J., Tait, C.R., Mumford, A.D. & Laffan, M.; for the British Committee for Standards in Haematology. (2013) Guideline on the management of bleeding in patients on antithrombotic agents. *British Journal of Haematology*, **160**, 35–46.
- Mammen, T., Keshava, S.N., Eapen, C.E., Raghuram, L., Moses, V., Gopi, K., Babu, N.S., Ramachandran, J. & Kurien, G. (2008) Transjugular liver biopsy: a retrospective analysis of 601 cases. *Journal of Vascular and Interventional Radiology*, **19**, 351–358.
- Manno, C., Strippoli, G.F.M., Arnesano, L., Bonifati, C., Campobasso, N., Gesualdo, L. & Schena, F.P. (2004) Predictors of bleeding complications in percutaneous ultrasound-guided renal biopsy. *Kidney International*, 66, 1570–1577.
- Manno, C., Bonifati, C., Torres, D.D., Campobasso, N. & Schena, F.P. (2011) Desmopressin acetate in percutaneous ultrasound-guided kidney biopsy: a randomized controlled trial. American Journal of Kidney Diseases, 57, 850–855.
- Mannucci, P.M. (2012) Desmopressin (DDAVP) in the treatment of bleeding disorders. *Treatment of Hemophilia*, November 2012, 1–9 World Federation of Hemophilia, Quebec, Canada.
- Mannucci, P.M., Remuzzi, G., Pusineri, F., Lombardi, R., Valsecchi, C., Mecca, G. & Zimmerman, T.S. (1983) Deamino-8-D-arginine vasopressin shortens the bleeding time in uremia. New England Journal of Medicine, 308, 8– 12.

- McCarthy, L.J., Danielson, C.F.M., Graves, V., Jackson, L., Axelrod, F., Greist, A., Cornetta, K. & Gabig, T. (1994) Do platelet transfusions to patients with TTP influence their survival? *Blood*, 84, 669a.
- Michallet, M., Goldet, K., Sobh, M., Morisset, S., Chelghoum, Y., Thomas, X., Barraco, F., Ducastelle, S., Labussiere, H., Renzullo, C., Paillet, C., Pivot, C., Straaten, P.B., Denis, A., Termoz, A., Detrait, M., Nicolini, F.E. & Jaisson-Hot, I. (2013) Prospective study of erythropoietin use on quality of life and cost effectiveness in acute myeloid leukemia and allogeneic hematopoietic stem cell transplantation patients. *Cancer*, **119**, 107–114.
- Milkins, C., Berryman, J., Cantwell, C., Elliott, C., Haggas, R., Jones, J., Rowley, M., Williams, M. & Win, N.; for the British Committee for Standards in Haematology. (2013) Guidelines for pre-transfusion compatibility procedures in blood transfusion laboratories. British Committee for Standards in Haematology. *Transfusion Medicine (Oxford, England)*, 23, 3–35.
- Moncharmont, P., Barday, G. & Meyer, F. (2014) Red blood cell alloimmunisation after platelet transfusion: a 5-year study. *Blood Transfusion*, 12, s147–s148.
- Mumtaz, H., Williams, V., Hauer-Jensen, M., Rowe, M., Henry-Tillman, R.S., Heaton, K., Mancino, A.T., Muldoon, R.L., Klimberg, V.S., Broadwater, J.R., Westbrook, K.C. & Lang, N.P. (2000) Central venous catheter placement in patients with disorders of hemostasis. *The American Journal of Surgery*, **180**, 503–506.
- Murphy, M. (2013) Post-transfusion purpura. In: Practical Transfusion Medicine (eds. by M. Murphy, D. Pamphilon & N. Heddle), pp. 127– 130. Wiley-Blackwell, Oxford, UK.
- Nahirniak, S., Slichter, S.J., Tanael, S., Rebulla, P., Pavenski, K., Vassallo, R., Fung, M., Duquesnoy, R., Saw, C.-L., Stanworth, S., Tinmouth, A., Hume, H., Ponnampalam, A., Moltzan, C., Berry, B. & Shehata, N. (2015) Guidance on platelet transfusion for patients with hypoproliferative thrombocytopenia. *Transfusion Medicine Reviews*, **29**, 3–13.
- Najima, Y., Ohashi, K., Miyazawa, M., Nakano, M., Kobayashi, T., Yamashita, T., Akiyama, H. & Sakamaki, H. (2009) Intracranial hemorrhage following allogeneic hematopoietic stem cell transplantation. *American Journal of Hematology*, 84, 298–301.
- Napolitano, M., Malato, A., Raffaele, F., Palazzolo, M., Iacono, G.L., Pinna, R., Geraci, G., Modica, G., Saccullo, G., Siragusa, S. & Cajozzo, M. (2013) Ultrasonography-guided central venous catheterisation in haematological patients with severe thrombocytopenia. *Blood Transfusion*, 11, 506–509.
- National Blood Authority. (2011). The National Blood Authority's Patient Blood Management Guideline: Module 1 – Critical Bleeding/Massive Transfusion. Available at: https://www.blood.gov.au/system/files/documents/pbm-module-1.pdf (accessed 16 June 2015).

13552141, 2017, 3. Downloaded from https://onlinelibaray.wiley.com/doi/10.1111/bjh.1423 by Harvard University, Wiley Online Libaray on [10/09/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Libaray for rules of use; OA articles are governed by the applicable Creative Commons License

- Neunert, C., Lim, W., Crowther, M., Cohen, A., Solberg, L. & Crowther, M.A. (2011) The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. *Blood*, **117**, 4190–4207.
- Nevo, S., Fuller, A.K., Hartley, E., Borinsky, M.E. & Vogelsang, G.B. (2007) Acute bleeding complications in patients after hematopoietic stem cell transplantation with prophylactic platelet transfusion triggers of  $10 \times 10^9$  and  $20 \times 10^9$ per L. *Transfusion*, **47**, 801–812.
- New, H.V., Berryman, J., Bolton-Maggs, P.H.B., Cantwell, C., Chalmers, E.A., Davies, T., Gottstein, R., Andrea Kelleher, A., Kumar, S., Morley, S.L. & Stanworth, S.J.; on behalf of the British Committee for Standards in Haematology. (2016). Guidelines on transfusion for fetuses, neonates and older children. DOI:10.1111/bjh.14233.
- NICE. (2015). Blood transfusion NG24. National Institute for Health and Clinical Excellence, London, UK. Available at: www.nice.org.uk/ guidance/ng24 (accessed 30 November 2015).
- Nishijima, D.K., Zehtabchi, M., Berrong, J. & Legome, E. (2012) Utility of platelet transfusion in adult patients with traumatic intracranial hemorrhage and preinjury antiplatelet use: a systematic review. *The Journal of Trauma and Acute Care Surgery*, **72**, 1658–1663.
- Office of National Statistics (ONS). (2013). National Population Projections: 2012-based Statistical Bulletin. Available at: https://www.ons.gov.uk/ peoplepopulationandcommunity/populationandmigration/populationprojections/bulletins/nationalpopulationprojections/2013-11-06 (accessed 12 March 2016).
- Olnes, M.J., Scheinberg, P., Calvo, K.R., Desmond, R., Tang, Y., Dumitriu, B., Parikh, A.R., Soto, S., Biancotto, A., Feng, X., Lozier, J., Wu, C.O., Young, N.S. & Dunbar, C.E. (2012) Eltrombopag and improved hematopoiesis in refractory aplastic anemia. *New England Journal of Medicine*, 367, 11–19.
- Passweg, J.R., Baldomero, H., Gratwohl, A., Bregni, M., Cesaro, S., Dreger, P., de Witte, T., Farge-Bancel, D., Gaspar, B., Marsh, J., Mohty, M., Peters, C., Tichelli, A., Velardi, A., de Elvira, C.R., Falkenburg, F., Sureda, A. & Madrigal, A.; European Group for Bone and Marrow Transplantation. (2012) The EBMT activity survey: 1990-2010. Bone Marrow Transplantation, 47, 906–923.
- Pavenski, K., Rebulla, P., Duquesnoy, R., Saw, C.L., Slichter, S.J., Tanael, S. & Shehata, N.; International Collaboration for Guideline Development, I.E.f.T.T., Collaborators. (2013) Efficacy of HLAmatched platelet transfusions for patients with hypoproliferative thrombocytopenia: a systematic review. *Transfusion*, 53, 2230–2242.
- Peigne, V., Perez, P., Resche Rigon, M., Mariotte, E., Canet, E., Mira, J.-P., Coppo, P., Veyradier, A. & Azoulay, E. (2012) Causes and risk factors of death in patients with thrombotic microangiopathies. *Intensive Care Medicine*, **38**, 1810–1817.
- Pendry, K. & Davies, T. (2011) An audit of the use and wastage in the North West of England and North Wales - where have all the platelets gone? *Blood and Transfusion Matters*, 34, 17–19.

- Perdigão, J.P.V., de Almeida, P.C., Rocha, T.D.S., Mota, M.R.L., Soares, E.C.S., Alves, A.P.N.N. & Sousa, F.B. (2012) Postoperative bleeding after dental extraction in liver pretransplant patients. *Journal of Oral and Maxillofacial Surgery*, **70**, e177–e184.
- Pietersz, R.N.I., Reesink, H.W., Panzer, S., Gilbertson, M.P., Borosak, M.E., Wood, E.M., Leitner, G.C., Rabitsch, W., Ay, C., Lambermont, M., Deneys, V., Sondag, D., Compernolle, V., Legrand, D., Francois, A., Tardivel, R., Garban, F., Sawant, R.B., Rebulla, P., Handa, M., Ohto, H., Kerkhoffs, J.L.H., Brand, A., Zhiburt, E., Cid, J., Escolar, G., Lozano, M., Puig, L., Knutson, F., Hallbook, H., Lubenow, N., Estcourt, L., Stanworth, S., Murphy, M.F., Williams, L., Mraz, D.L., Ross, R.L. & Snyder, E. (2012) Prophylactic platelet transfusions. Vox Sanguinis, 103, 159–176.
- Poeran, J., Rasul, R., Suzuki, S., Danninger, T., Mazumdar, M., Opperer, M., Boettner, F. & Memtsoudis, S.G. (2014) Tranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safety. *BMJ*, 349, g4829.
- Potet, J., Thome, A., Curis, E., Arnaud, F.X., Weber-Donat, G., Valbousquet, L., Peroux, E., Flor, E., Dody, C., Konopacki, J., Malfuson, J.V., Cartry, C., Lahutte, M., de Revel, T., Baccialone, J. & Teriitehau, C.A. (2013) Peripherally inserted central catheter placement in cancer patients with profound thrombocytopaenia: a prospective analysis. *European Radiology*, 23, 2042–2048.
- Provan, D., Stasi, R., Newland, A.C., Blanchette, V.S., Bolton-Maggs, P., Bussel, J.B., Chong, B.H., Cines, D.B., Gernsheimer, T.B., Godeau, B., Grainger, J., Greer, I., Hunt, B.J., Imbach, P.A., Lyons, G., McMillan, R., Rodeghiero, F., Sanz, M.A., Tarantino, M., Watson, S., Young, J. & Kuter, D.J. (2010) International consensus report on the investigation and management of primary immune thrombocytopenia. *Blood*, **115**, 168–186.
- Pruller, F., Drexler, C., Archan, S., Macher, S., Raggam, R.B. & Mahla, E. (2011) Low platelet reactivity is recovered by transfusion of stored platelets: a healthy volunteer *in vivo* study. *Journal of Thrombosis and Haemostasis*, 9, 1670–1673.
- Qureshi, H., Lowe, D., Dobson, P., Grant-Casey, J., Parris, E., Dalton, D., Hickling, K., Waller, F., Howell, C. & Murphy, M. (2007) National comparative audit of the use of platelet transfusions in the UK. *Transfusion Clinique et Biologique*, 14, 509–513.
- Qureshi, H., Massey, E., Kirwan, D., Davies, T., Robson, S., White, J., Jones, J. & Allard, S. (2014) BCSH guideline for the use of anti-D immunoglobulin for the prevention of haemolytic disease of the fetus and newborn. *Transfusion Medicine*. 24, 8–20.
- Randolph, A.G., Cook, D.J., Gonzales, C.A. & Pribble, C.G. (1996) Ultrasound guidance for placement of central venous catheters: a metaanalysis of the literature. *Critical Care Medicine*, 24, 2053–2058.
- Ray, C.E. & Shenoy, S.S. (1997) Patients with thrombocytopenia: outcome of radiologic

placement of central venous access devices. *Radiology*, **204**, 97–99.

- Rebulla, P., Finazzi, G., Marangoni, F., Avvisati, G., Gugliotta, L., Tognoni, G., Barbui, T., Mandelli, F. & Sirchia, G. (1997) The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto. N Engl J Med, 337, 1870–1875.
- Refaai, M.A., Chuang, C., Menegus, M., Blumberg, N. & Francis, C.W. (2010) Outcomes after platelet transfusion in patients with heparin-induced thrombocytopenia. *Journal of Thrombosis and Haemostasis*, 8, 1419–1421.
- Rockey, D.C., Caldwell, S.H., Goodman, Z.D., Nelson, R.C. & Smith, A.D.; American Association for the Study of Liver, D. (2009) Liver biopsy. *Hepatology*, 49, 1017–1044.
- Rose, M. & Eldor, A. (1987) High incidence of relapses in thrombotic thrombocytopenic purpura: clinical study of 38 patients. *The American Journal of Medicine*, 83, 437–444.
- Rossaint, R., Bouillon, B., Cerny, V., Coats, T.J., Duranteau, J., Fernandez-Mondejar, E., Hunt, B.J., Komadina, R., Nardi, G., Neugebauer, E., Ozier, Y., Riddez, L., Schultz, A., Stahel, P.F., Vincent, J.L. & Spahn, D.R. (2010) Management of bleeding following major trauma: an updated European guideline. *Critical Care*, 14, R52.
- Rutkow, I. (1978) Thrombotic thrombocytopenic purpura (TTP) and splenectomy: a current appraisal. Annals of Surgery, 188, 701–705.
- SaBTO. (2012) SaBTO report of the Cytomegalovirus Steering Group. Vol. 2015. Available at: https://www.gov.uk/government/publications/ sabto-report-of-the-cytomegalovirus-steeringgroup (accessed 16 January 2016).
- Sagmeister, M., Oec, L. & Gmur, J. (1999) A restrictive platelet transfusion policy allowing long-term support of outpatients with severe aplastic anemia. *Blood*, **93**, 3124–3126.
- Salama, A., Kiesewetter, H., Kalus, U., Movassaghi, K. & Meyer, O. (2008) Massive platelet transfusion is a rapidly effective emergency treatment in patients with refractory autoimmune thrombocytopenia. *Thrombosis and Haemostasis*, 100, 762–765.
- Samama, C.M., Djoudi, R., Lecompte, T., Nathan, N. & Schved, J.-F. (2006) Perioperative platelet transfusion Recommendations of the French Health Products Safety Agency (AFSSAPS) 2003. *Minerva Anestesiologica*, 72, 447–452.
- Sarode, R., Gottschall, J.L., Aster, R.H. & McFarland, J.G. (1997) Thrombotic thrombocytopenic purpura: early and late responders. *American Journal of Hematology*, 54, 102–107.
- Schiffer, C.A., Anderson, K.C., Bennett, C.L., Bernstein, S., Elting, L.S., Goldsmith, M., Goldstein, M., Hume, H., McCullough, J.J., McIntyre, R.E., Powell, B.L., Rainey, J.M., Rowley, S.D., Rebulla, P., Troner, M.B. & Wagnon, A.H. (2001) Platelet transfusion for patients with cancer: clinical practice guidelines of the American Society of Clinical Oncology. *Journal of Clinical Oncology*, 19, 1519–1538.

- Scornik, J.C., Bromberg, J.S., Norman, D.J., Bhanderi, M., Gitlin, M. & Petersen, J. (2013) An update on the impact of pre-transplant transfusions and allosensitization on time to renal transplant and on allograft survival. BMC Nephrology, 14, 217.
- Scully, M., Hunt, B.J., Benjamin, S., Liesner, R., Rose, P., Peyvandi, F., Cheung, B. & Machin, S.J.; on behalf of British Committee for Standards in Haematology. (2012) Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. *British Journal of Haematology*, **158**, 323–335.
- Seeff, L.B., Everson, G.T., Morgan, T.R., Curto, T.M., Lee, W.M., Ghany, M.G., Shiffman, M.L., Fontana, R.J., Di Bisceglie, A.M., Bonkovsky, H.L. & Dienstag, J.L.; for the HALT-C Group. (2010) Complication rate of percutaneous liver biopsies among persons with advanced chronic liver disease in the HALT-C trial. *Clinical Gastroenterology and Hepatology*, **8**, 877–883.
- Segal, H.C., Briggs, C., Kunka, S., Casbard, A., Harrison, P., Machin, S.J. & Murphy, M.F. (2005) Accuracy of platelet counting haematology analysers in severe thrombocytopenia and potential impact on platelet transfusion. *British Journal of Haematology*, **128**, 520–525.
- Sekeres, M.A., Kantarjian, H., Fenaux, P., Becker, P., Boruchov, A., Guerci-Bresler, A., Hu, K., Franklin, J., Wang, Y.M. & Berger, D. (2011) Subcutaneous or intravenous administration of romiplostim in thrombocytopenic patients with lower risk myelodysplastic syndromes. *Cancer*, **117**, 992–1000.
- Shakur, H., Roberts, I., Bautista, R., Caballero, J., Coats, T., Dewan, Y., El-Sayed, H., Gogichaishvili, T., Gupta, S., Herrera, J., Hunt, B., Iribhogbe, P., Izurieta, M., Khamis, H., Komolafe, E., Marrero, M.A., Mejia-Mantilla, J., Miranda, J., Morales, C., Olaomi, O., Olldashi, F., Perel, P., Peto, R., Ramana, P.V., Ravi, R.R. & Yutthakasemsunt, S. (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. *Lancet*, **376**, 23–32.
- Shamseddine, A., Saliba, T., Aoun, E., Chahal, A., El-Saghir, N., Salem, Z., Bazarbachi, A., Khalil, M. & Taher, A. (2004) Thrombotic thrombocytopenic purpura: 24 years of experience at the American University of Beirut Medical Center. *Journal of Clinical Apheresis*, **19**, 119–124.
- Shi, J., Ji, H., Ren, F., Wang, G., Xu, M., Xue, Y., Chen, M., Qi, J. & Li, L. (2013a) Protective effects of tranexamic acid on clopidogrel before coronary artery bypass grafting: a multicenter randomized trial. *JAMA Surgery*, 148, 538–547.
- Shi, J., Wang, G., Lv, H., Yuan, S., Wang, Y., Ji, H. & Li, L. (2013b) Tranexamic Acid in onpump coronary artery bypass grafting without clopidogrel and aspirin cessation: randomized trial and 1-year follow-up. *Annals of Thoracic Surgery*, 95, 795–802.
- Spahn, D.R., Bouillon, B., Cerny, V., Coats, T.J., Duranteau, J., Fernandez-Mondejar, E.,

Filipescu, D., Hunt, B.J., Komadina, R., Nardi, G., Neugebauer, E., Ozier, Y., Riddez, L., Schultz, A., Vincent, J.L. & Rossaint, R. (2013) Management of bleeding and coagulopathy following major trauma: an updated European guideline. *Critical Care*, **17**, R76.

- Spahr, J.E. & Rodgers, G.M. (2008) Treatment of immune-mediated thrombocytopenia purpura with concurrent intravenous immunoglobulin and platelet transfusion: a retrospective review of 40 patients. *American Journal of Hematology*, 83, 122–125.
- Stanworth, S.J., Estcourt, L.J., Powter, G., Kahan, B., Dyer, C., Choo, L., Bakrania, L., Llewelyn, C., Littlewood, T., Soutar, R., Norfolk, D., Copplestone, A., Smith, N., Kerr, P., Jones, G., Raj, K., Westerman, D., Szer, J., Jackson, N., Bardy, P., Plews, D., Lyons, S., Bielby, L., Wood, E.M. & Murphy, M. (2013a) A no-prophylaxis platelet transfusion strategy for hematologic cancers. *New England Journal of Medicine*, **368**, 1771–1780.
- Stanworth, S.J., Walsh, T.S., Prescott, R.J., Lee, R.J., Watson, D.M. & Wyncoll, D.L. (2013b) Thrombocytopenia and platelet transfusion in UK critical care: a multicenter observational study. *Transfusion*, **53**, 1050–1058.
- Stanworth, S., Estcourt, L.J., Llewelyn, C., Murphy, M.F. & Wood, E.M.; for the TOPPS study investigators. (2014) Impact of prophylactic platelet transfusions on bleeding events in patients with hematologic malignancies: a sub-group analysis of a randomized trial. *Transfusion*, 54, 2385–2393.
- Stanworth, S.J., Hudson, C.L., Estcourt, L.J., Johnson, R.J. & Wood, E.M. (2015) Risk of bleeding and use of platelet transfusions in patients with hematological malignancies: recurrent event analysis. *Haematologica*, 100, 740–747.
- Stecker, M.S., Johnson, M.S., Ying, J., McLennan, G., Agarwal, D.M., Namyslowski, J., Ahmad, I., Shah, H., Butty, S. & Casciani, T. (2007) Time to hemostasis after traction removal of tunneled cuffed central venous catheters. *Journal of Vascular and Interventional Radiology*, 18, 1232– 1239; quiz 1240.
- Swisher, K.K., Terrell, D.R., Vesely, S.K., Kremer Hovinga, J.A., Lämmle, B. & George, J.N. (2009) Clinical outcomes after platelet transfusions in patients with thrombotic thrombocytopenic purpura. *Transfusion*, **49**, 873–887.
- Taft, E. (1979) Thrombotic thrombocytopenic purpura and dose of plasma exchange. *Blood*, 54, 842–849.
- Tàssies, D., Reverter, J.C., Cases, A., Calls, J., Escolar, G. & Ordinas, A. (1998) Effect of recombinant human erythropoietin treatment on circulating reticulated platelets in uremic patients: association with early improvement in platelet function. *American Journal of Hematol*ogy, 59, 105–109.
- Tercan, F., Ozkan, U. & Oguzkurt, L. (2008) USguided placement of central vein catheters in patients with disorders of hemostasis. *European Journal of Radiology*, 65, 253–256.
- The Board of the German Medical Association on the Recommendation of the Scientific Advisory

Board. (2009) Platelet concentrates. Cross-sectional guidelines for therapy with blood components and plasma derivatives. *Transfusion Medicine and Hemotherapy*, **36**, 372–382.

- Thiele, T., Sumnig, A., Hron, G., Muller, C., Althaus, K., Schroeder, H.W. & Greinacher, A. (2012) Platelet transfusion for reversal of dual antiplatelet therapy in patients requiring urgent surgery: a pilot study. *Journal of Thrombosis and Haemostasis*, **10**, 968–971.
- Tinegate, H., Birchall, J., Gray, A., Haggas, R., Massey, E., Norfolk, D., Pinchon, D., Sewell, C., Wells, A. & Allard, S.; for the British Committee for Standards in Haematology Blood Transfusion Task Force. (2012) Guideline on the investigation and management of acute transfusion reactions. Prepared by the BCSH Blood Transfusion Task Force. British Journal of Haematology, 159, 143–153.
- Tobian, A.A., Fuller, A.K., Uglik, K., Tisch, D.J., Borge, P.D., Benjamin, R.J., Ness, P.M. & King, K.E. (2014) The impact of platelet additive solution apheresis platelets on allergic transfusion reactions and corrected count increment (CME). *Transfusion*, 54, 1523–1529; quiz 1522.
- Tomoyose, T., Ohama, M., Yamanoha, A., Masuzaki, H., Okudaira, T. & Tokumine, J. (2013) Real-time ultrasound-guided central venous catheterization reduces the need for prophylactic platelet transfusion in thrombocytopenic patients with hematological malignancy. *Transfusion and Apheresis Science*, **49**, 367–369.
- Torres Munoz, A., Valdez-Ortiz, R., Gonzalez-Parra, C., Espinoza-Davila, E., Morales-Buenrostro, L.E. & Correa-Rotter, R. (2011) Percutaneous renal biopsy of native kidneys: efficiency, safety and risk factors associated with major complications. *Archives of Medical Science*, 7, 823–831.
- Treleaven, J., Gennery, A., Marsh, J., Norfolk, D., Page, L., Parker, A., Saran, F., Thurston, J. & Webb, D. (2011) Guidelines on the use of irradiated blood components prepared by the British Committee for Standards in Haematology Blood Transfusion Task Force. *British Journal of Haematology*, **152**, 35–51.
- Vassallo, R., Bachowski, G., Benjamin, R.J., Borge, D., Dodd, R., Eder, A., Eastvold, P.J., Goldberg, C., Hopkins, C.K., Lima, J., McLaughlin, L.G.S., Miller, Y.M., Pisciotto, P., Shaikh, S., Stramer, S. & Westra, J. (2013) A Compendium of Transfusion Practice Guidelines. American Red Cross. Available at: http://www.redcrossblood.org/sites/ arc/files/59802\_compendium\_brochure\_v\_6\_10\_ 9\_13.pdf (accessed 01 November 2015).
- Vassallo, R.R., Fung, M., Rebulla, P., Duquesnoy, R., Saw, C.L., Slichter, S.J., Tanael, S. & Shehata, N. (2014) Utility of cross-matched platelet transfusions in patients with hypoproliferative thrombocytopenia: a systematic review. *Transfusion*, 54, 1180–1191.
- van Veen, J.J., Nokes, T.J. & Makris, M. (2010) The risk of spinal haematoma following neuraxial anaesthesia or lumbar puncture in thrombocytopenic individuals. *British Journal of Haematology*, **148**, 15–25.

13552141, 2017, 3. Downloaded from https://onlinelibaray.wiley.com/doi/10.1111/bjh.1423 by Harvard University, Wiley Online Libaray on [10/09/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Libaray for rules of use; OA articles are governed by the applicable Creative Commons License

- Vilahur, G., Choi, B., Zafar, M., Viles-Gonzalez, J., Vorchheimer, D., Fuster, V. & Badimon, J. (2007) Normalization of platelet reactivity in clopidogrel-treated subjects. *Journal of Thrombo*sis & Haemostasis, 5, 82–90.
- Wallace, M.J., Narvios, A., Lichtiger, B., Ahrar, K., Morello, F.A., Gupta, S., Madoff, D.C. & Hicks, M.E. (2003) Transjugular liver biopsy in patients with hematologic malignancy and severe thrombocytopenia. *Journal of Vascular and Interventional Radiology*, 14, 323–327.
- Wandt, H., Schaefer-Eckart, K., Wendelin, K., Pilz, B., Wilhelm, M., Thalheimer, M., Mahlknecht, U., Ho, A., Schaich, M., Kramer, M., Kaufmann, M., Leimer, L., Schwerdtfeger, R., Conradi, R., Dolken, G., Klenner, A., Hanel, M., Herbst, R., Junghanss, C. & Ehninger, G. (2012) Therapeutic platelet transfusion versus routine prophylactic transfusion in patients with haematological malignancies: an open-label, multicentre, randomised study. *Lancet*, **380**, 1309–1316.
- Wang, E.S., Lyons, R.M., Larson, R.A., Gandhi, S., Liu, D., Matei, C., Scott, B., Hu, K. & Yang, A.S. (2012) A randomized, double-blind, placebo-controlled phase 2 study evaluating the efficacy and safety of romiplostim treatment of patients with low or intermediate-1 risk myelodysplastic syndrome receiving lenalidomide. Journal of Hematology & Oncology, 5, 71.
- Wardrop, D., Estcourt, L.J., Brunskill, S.J., Doree, C., Trivella, M., Stanworth, S. & Murphy, M.F. (2013) Antifibrinolytics (lysine analogues) for the prevention of bleeding in patients with haematological disorders. [Review]. Cochrane Database of Systematic Reviews., 7, 2013.
- Warkentin, T.E. (2011) How I diagnose and manage HIT. ASH Education Program Book, 2011, 143–149.

- Watson, H., Davidson, S. & Keeling, D. (2012) Guidelines on the diagnosis and management of heparin-induced thrombocytopenia: second edition. *British Journal of Haematology*, **159**, 528– 540.
- Webert, K., Cook, R.J., Sigouin, C.S., Rebulla, P. & Heddle, N.M. (2006) The risk of bleeding in thrombocytopenic patients with acute myeloid leukemia. *Haematologica*, **91**, 1530–1537.
- Weigand, K., Encke, J., Meyer, F.J., Hinkel, U.P., Munder, M., Stremmel, W. & Zahn, A. (2009) Low levels of prothrombin time (INR) and platelets do not increase the risk of significant bleeding when placing central venous catheters. *Medizinische Klinik (Munich)*, **104**, 331–335.
- Whittier, W.L. (2004) Timing of complications in percutaneous renal biopsy. *Journal of the American Society of Nephrology*, **15**, 142–147.
- Wikkelsø, A., Lunde, J., Johansen, M., Stensballe, J., Wetterslev, J., Møller, A.M. & Afshari, A. (2013) Fibrinogen concentrate in bleeding patients. *Cochrane Database of Systematic Reviews (Online)*, **2013**, CD008864.
- Wohlauer, M.V., Moore, E.E., Thomas, S., Sauaia, A., Evans, E., Harr, J., Silliman, C.C., Ploplis, V., Castellino, F.J. & Walsh, M. (2012) Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. *Journal of the American College of Surgeons*, **214**, 739–746.
- Yanagisawa, R., Shimodaira, S., Kojima, S., Nakasone, N., Ishikawa, S., Momose, K., Honda, T., Yoshikawa, K., Saito, S., Tanaka, M., Nakazawa, Y., Sakashita, K., Shiohara, M., Akino, M., Hirayama, J., Azuma, H. & Koike, K. (2013) Replaced platelet concentrates containing a new additive solution, M-sol: safety and efficacy for pediatric patients. *Transfusion*, 53, 2053–2060.

- Zaffuto, B.J., Conley, G.W., Connolly, G.C., Henrichs, K.F., Francis, C.W., Heal, J.M., Blumberg, N. & Refaai, M.A. (2015) ABOimmune complex formation and impact on platelet function, red cell structural integrity and haemostasis: an *in vitro* model of ABO non-identical transfusion. *Vox Sanguinis*, 110, 219–226.
- Zeidler, K., Arn, K., Senn, O., Schanz, U. & Stussi, G. (2011) Optimal preprocedural platelet transfusion threshold for central venous catheter insertions in patients with thrombocytopenia. *Transfusion*, **51**, 2269–2276.
- Zhu, M.S., Chen, J.Z. & Xu, A.P. (2014) Factors that can minimize bleeding complications after renal biopsy. *International Urology and Nephrol*ogy, 46, 1969–1975.
- Zisk, J.L., Mackley, A., Clearly, G., Chang, E., Christensen, R.D. & Paul, D.A. (2013) Transfusing neonates based on platelet count vs. platelet mass: a randomized feasibility-pilot study. *Platelets*, 25, 513–516.
- Zumberg, M.S., del Rosario, M.L., Nejame, C.F., Pollock, B.H., Garzarella, L., Kao, K.J., Lottenberg, R. & Wingard, J.R. (2002) A prospective randomized trial of prophylactic platelet transfusion and bleeding incidence in hematopoietic stem cell transplant recipients: 10,000/μL versus 20,000/μL trigger. *Biology of Blood and Marrow Transplantation*, **8**, 569–576.
- Zwaginga, J., IJsseldijk, M., de Groot, P., Kooistra, M., Vos, J., van Es, A., Koomans, H., Struyvenberg, A. & Sixma, J. (1991) Treatment of uremic anemia with recombinant erythropoietin also reduces the defects in platelet adhesion and aggregation caused by uremic plasma. *Thrombo*sis and Haemostasis, 66, 638–647.

# Appendix 1

# Platelet transfusion: principles, risks, alternatives and best practice

Platelet transfusions are an essential component in the management of selected patients with thrombocytopenia. However they need to be used judiciously as they are a limited resource and are not risk-free.

# Classification of conditions that may require platelet transfusion

- Bone marrow failure (BMF). Reversible associated with treatable disease and/or chemotherapy and occasionally chronic (irreversible) BMF, e.g. myelodysplastic syndromes
- Thrombocytopenia in critical care
- Peripheral platelet consumption/destruction e.g. disseminated intravascular coagulation and immune thrombocytopenia
- Abnormal platelet function. Inherited or acquired disorders e.g. anti-platelet agents, uraemia

# Principles of platelet transfusion

Platelets are used in 3 distinct situations.

-Prophylactic [World Health organization (WHO) bleeding grade 0 or 1] to prevent bleeding

- o Routine use in non-bleeding patients
- o In the presence of additional risk factors for bleeding e.g. sepsis or abnormalities of haemostasis

-Pre-procedure to prevent bleeding expected to occur during surgery/invasive procedure

-Therapeutic (WHO bleeding grade ≥2) to treat active bleeding

# Contraindications to platelet transfusion unless life-threatening haemorrhage

• Thrombotic Thrombocytopenic Purpura (TTP)

# Risks associated with platelet transfusion.

| Reduced effectiveness of future platelet transfusionAlloimmunisation    |                                                  |
|-------------------------------------------------------------------------|--------------------------------------------------|
| Adverse effects                                                         |                                                  |
| Febrile non-haemolytic transfusion reactions (FNHTR) and allergic       |                                                  |
| reactions (including mild), reported incidence up to 3%. May require in | nvestigation to exclude other causes and prolong |
| hospital stay.                                                          |                                                  |
| Estimated risk of moderate/severe reactions and infection transmission  |                                                  |
| FNHTR 1 in 6000                                                         | 1 in 6,000                                       |
| Allergic 1 in 6000                                                      | 1 in 6,000                                       |
| Haemolysis 1 in 600 000                                                 | 1 in 600,000                                     |
| Bacterial sepsis                                                        | Rare since bacterial                             |
| Transfusion Related Acute Lung Injury                                   | screening introduced                             |
| Hepatitis B infection                                                   | in 2010                                          |
| Hepatitis C infection                                                   | Less than 1 in 1 000 000                         |
| HIV infection                                                           | 1 in 1 000 000                                   |
|                                                                         | 1 in 30 000 000                                  |
|                                                                         | 1 in 7 000 000                                   |

# Possible alternatives to platelet transfusion.

Apply surface pressure after superficial procedures and correct surgical causes for bleeding Surgical patients expected to have at least a 500 ml blood loss, use tranexamic acid (TXA) unless contraindicated Trauma patients who are bleeding/at risk of bleeding, early use of TXA Severe bleeding replace fibrinogen if plasma concentration less than 1.5 g/l Anti-platelet agents-discontinue or if urgent procedure/bleeding use TXA if risk/benefit would support Uraemia with bleeding or preprocedure – dialyse, correct anaemia, consider desmopressin Inherited platelet function disorders-specialist haematology advice required. Consider desmopressin Chronic BMF with bleeding – consider TXA

### Prior to prescribing a platelet transfusion consider

- What are the indications for transfusion in this patient?
- Are there alternatives that could be used in preference to platelet transfusion?
- Has the indication been documented in the patients' record and on the transfusion request form?
- Has the patient consented to receive a platelet transfusion?

Indications for use of platelet transfusion in adults.

| Indication                                                                                       | Transfusion indicated (threshold)/not indicated |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Prophylactic use (No bleeding or WHO grade 1)                                                    |                                                 |
| One adult dose required                                                                          |                                                 |
| Reversible BMF including allogeneic stem cell transplantation                                    | $10 \times 10^{9}/l$                            |
| Reversible BMF with autologous stem cell transplantation (consider no prophylaxis)               | $10 \times 10^{9}/l$                            |
| Critical illness                                                                                 | $10 \times 10^{9}/l$                            |
| Chronic BMF receiving intensive therapy                                                          | $10 \times 10^{9}/l$                            |
| Chronic BMF to prevent persistent bleeding of grade ≥2                                           | Count variable                                  |
| Chronic stable BMF, abnormal platelet function, platelet consumption/destruction (e.g. DIC, TTP) | Not indicated                                   |
| or immune thrombocytopenia (ITP, HIT, PTP)                                                       |                                                 |
| Prophylactic use in the presence of risk factors for bleeding                                    |                                                 |
| (e.g. sepsis, antibiotic treatment, abnormalities of haemostasis)                                |                                                 |
| Reversible/chronic bone marrow failure/critical care                                             | $10-20 \times 10^{9}/l$                         |

| Indication                                                                                                                                                   | Transfusion indicated (threshold)/not indicated |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Abnormal platelet function, platelet consumption/destruction, immune thrombocytopenia                                                                        | Not indicated                                   |
| Platelet transfusion pre-procedure                                                                                                                           |                                                 |
| Central venous catheter (CVC) excluding PICC line                                                                                                            | $20 \times 10^{9}/l$                            |
| Lumbar puncture                                                                                                                                              | $40 \times 10^{9}/l$                            |
| Percutaneous liver biopsy                                                                                                                                    | $50 \times 10^{9}/l$                            |
| Major surgery                                                                                                                                                | $50 \times 10^{9}/l$                            |
| Epidural anaesthesia, insertion & removal                                                                                                                    | $80 \times 10^{9}/l$                            |
| Neurosurgery or ophthalmic surgery involving the posterior segment of the eye                                                                                | $100 \times 10^{9}/l$                           |
| Bone marrow aspirate or trephine biopsies, PICC line insertion, traction removal of central venous                                                           | Not indicated                                   |
| catheters (CVCs), cataract surgery                                                                                                                           |                                                 |
| Specific clinical conditions – see below for indications                                                                                                     |                                                 |
| Therapeutic use (Bleeding WHO grade 2 or above)                                                                                                              |                                                 |
| Severe bleeding                                                                                                                                              | $50 \times 10^{9}/l$                            |
| Multiple trauma, brain or eye injury, spontaneous intracerebral haemorrhage                                                                                  | $100 \times 10^{9}/l$                           |
| Bleeding (WHO grade $\geq 2$ ) but not severe                                                                                                                | $30 \times 10^{9}/l$                            |
| Bleeding in specific clinical conditions – see below for indications                                                                                         |                                                 |
| Specific clinical conditions                                                                                                                                 |                                                 |
| Platelet function defect                                                                                                                                     | Count variable                                  |
| Congenital – Pre-procedure or therapeutic use. When alternative therapy contraindicated or ineffective. Directed by specialist in haemostasis.               |                                                 |
| Acquired (anti-platelet agents, uraemia)- only indicated for severe bleeding                                                                                 |                                                 |
| Disseminated intravascular bleeding Pre-procedure or therapeutic use. Consider threshold counts                                                              | Use pre-procedure/therapeutic                   |
| above but may not be achievable and individual case review required.                                                                                         | threshold as guide                              |
| Thrombotic thrombocytopenic purpura Platelet transfusion contraindicated unless life-threatening                                                             | Count variable                                  |
| bleeding                                                                                                                                                     |                                                 |
| Immune thrombocytopenia (ITP, HIT, PTP). Pre-procedure when other therapy ineffective/                                                                       | Use pre-procedure/therapeutic                   |
| procedure urgent or to treat severe bleeding. Consider threshold counts above but may be<br>unachievable or unnecessary and individual case review required. | threshold as guide                              |

Disseminated intravascular coagulation (DIC), peripherally inserted central catheter (PICC), thrombotic thrombocytopenic purpura (TTP), primary immune thrombocytopenia (ITP), heparin-induced thrombocytopenia (HIT), post-transfusion purpura (PTP).