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Abstract: Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic microangiopathy charac-
terized by microangiopathic hemolytic anemia, severe thrombocytopenia, and ischemic end organ
injury due to microvascular platelet-rich thrombi. TTP results from a severe deficiency of the specific
von Willebrand factor (VWF)-cleaving protease, ADAMTS13 (a disintegrin and metalloprotease with
thrombospondin type 1 repeats, member 13). ADAMTS13 deficiency is most commonly acquired
due to anti-ADAMTS13 autoantibodies. It can also be inherited in the congenital form as a result of
biallelic mutations in the ADAMTS13 gene. In adults, the condition is most often immune-mediated
(iTTP) whereas congenital TTP (cTTP) is often detected in childhood or during pregnancy. iTTP
occurs more often in women and is potentially lethal without prompt recognition and treatment.
Front-line therapy includes daily plasma exchange with fresh frozen plasma replacement and im-
munosuppression with corticosteroids. Immunosuppression targeting ADAMTS13 autoantibodies
with the humanized anti-CD20 monoclonal antibody rituximab is frequently added to the initial ther-
apy. If available, anti-VWF therapy with caplacizumab is also added to the front-line setting. While
it is hypothesized that refractory TTP will be less common in the era of caplacizumab, in relapsed
or refractory cases cyclosporine A, N-acetylcysteine, bortezomib, cyclophosphamide, vincristine, or
splenectomy can be considered. Novel agents, such as recombinant ADAMTS13, are also currently
under investigation and show promise for the treatment of TTP. Long-term follow-up after the acute
episode is critical to monitor for relapse and to diagnose and manage chronic sequelae of this disease.

Keywords: thrombotic thrombocytopenic purpura; TTP; ADAMTS13; treatment; diagnosis;
follow-up; review; caplacizumab

1. Introduction
1.1. History of Thrombotic Thrombocytopenic Purpura

In 1924, Dr. Eli Moschcowitz described a previously healthy 16-year-old girl who
became acutely ill with fever, weakness, focal neurological symptoms, and severe thrombo-
cytopenia. Ultimately, she became comatose and died after one week. Autopsy revealed
widely disseminated thrombi in the terminal arterioles and capillaries of various organs
but the underlying etiology of this mysterious illness was unknown [1,2]. This poorly
understood condition was named thrombotic thrombocytopenic purpura (TTP) by Singer
in 1947 [3]. Two decades later, Amorosi and Ultmann introduced the classic diagnostic
pentad of TTP consisting of fever, thrombocytopenia, hemolytic anemia, renal injury, and
neurological manifestations. Their case series and review of the literature also highlighted
the >90% mortality rate of this devastating condition [4]. Shortly thereafter, case reports
detailing the successful treatment of congenital TTP (cTTP) patients with infusions of
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plasma led to the conclusion that a deficiency of an unknown plasma factor contributed to
the disease [5,6]. In 1982, Moake et al. first identified “unusually large” von Willebrand
factor (VWF) multimers in the plasma of four chronic relapsing TTP patients—similar to
the large multimers synthesized and secreted by human endothelial cells in culture. They
hypothesized that these hyperadhesive ultralarge VWF (ULVWF) multimers were due
to a suspected deficiency of a VWF depolymerase present in normal plasma [7]. Their
hypothesis was reinforced when a highly effective therapy for TTP, plasma exchange, was
described in 1991. The treatment of immune-mediated TTP (iTTP) was revolutionized
and the mortality rate was improved from >90% to 10–20% with prompt therapy [8]. Five
years later, a novel metalloprotease which specifically cleaved ULVWF was purified from
human plasma [9,10]. A severe deficiency of this protease was noted in TTP patients, both
through acquired autoantibodies and through an inherited deficiency [11,12]. In 2001,
this was subsequently identified as ADAMTS13 (a disintegrin and metalloprotease with
thrombospondin type 1 motifs, member 13), the only known function of which is to cleave
VWF [13–17]. As of 2020, the improved molecular understanding of TTP along with study
of survivors have allowed for marked advancements in diagnosis [18], treatment [19–22],
and the long-term management [23–25] of these patients.

1.2. Definitions and Terminology

Thrombotic microangiopathy (TMA) is a broad term which has both pathologic (oc-
clusive microvascular or macrovascular disease commonly with intraluminal thrombus
formation) and clinical (microangiopathic hemolytic anemia (MAHA) with thrombocy-
topenia) definitions [26,27]. The different entities presenting with TMA findings have
historically been difficult to distinguish from one another, but elucidating the pathophysiol-
ogy of TTP has allowed for more accurate differentiation. As a result, standard definitions
and terminology have been adopted [27,28].

TTP is characterized by MAHA with severe thrombocytopenia and variable organ is-
chemia, most commonly neurologic, cardiac, or renal [3,4,23,29]. The diagnosis is confirmed
by a severe deficiency (<10%) of ADAMTS13 activity [11,12,27]. TTP is further divided into
two categories based on the mechanism of ADAMTS13 deficiency: congenital (inherited)
vs. immune-mediated (acquired). Congenital TTP, also known as Upshaw–Schulman syn-
drome or hereditary TTP, is defined by a persistent severe deficiency (<10%) in ADAMTS13
caused by biallelic pathogenic mutations in the ADAMTS13 gene [27]. Immune-mediated
TTP, sometimes referred to as acquired TTP, is caused by ADAMTS13 deficiency mediated
by autoantibodies [12,27]. iTTP is further subdivided into primary iTTP, when there is
no obvious associated disorder, and secondary iTTP, when an associated condition can
be identified [27].

2. Epidemiology

iTTP typically presents in adulthood, accounting for 90% of cases [29]. The annual
incidence is 1.5–6 cases per million per year in adults [29–32]. Discrepancies in annual
incidence rate are likely due to demographic factors in the country of origin. In France and
Germany, which are predominantly Caucasian, the incidence is ~1.5 cases per million per
year [29,32]. The annual incidence in the U.S. is 2.99 cases per million per year, possibly a
result of the higher proportion of African Americans, who have an approximately eightfold-
increased incidence rate of TTP [31,33]. In a regional UK registry, the incidence rate was
found to be six per million, though this could represent an overestimation as TTP was
diagnosed clinically and did not rely on ADAMTS13 measurement in all cases [30].

Childhood-onset iTTP is considerably less common, comprising approximately 10% of
all cases [34]. There is a scarcity of data regarding the incidence and prevalence of child and
adolescent onset iTTP. The French National TMA Registry estimates the yearly incidence
of childhood-onset iTTP to be 0.2 new cases per million with a prevalence of 1 case per
million as of December 2015 [34]. This is consistent with the childhood iTTP incidence rate
found in the Oklahoma (U.S.) registry of 0.1 cases per million [31].
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Women are two to three times more likely to develop iTTP, which is consistent across
registries globally [29–32,34–37]. ADAMTS13 deficiency is caused by an acquired autoim-
mune mechanism for the vast majority of TTP cases.

An inherited deficiency of ADAMTS13 due to mutations in the ADAMTS13 gene
occurs in approximately 3–5% of patients with TTP [29–31,36]. The exact prevalence of
cTTP is uncertain, though some experts estimate this to be 0.5–2 cases per million; fur-
ther investigation is needed [38]. cTTP often presents in childhood prior to 10 years of
age [39–42] but large registries have reported that 10% of cases occur after the age of
40 [40–42]. cTTP accounts for a significant proportion of TTP cases in children and obstetri-
cal TTP patients, consisting of 33% and 34% of all cases in those cohorts respectively [29,34].

3. Pathophysiology
3.1. Role of ADAMTS13 and VWF in TTP

ADAMTS13 is a critically important enzyme, synthesized in hepatic stellate
cells [43,44], whose only known function is to regulate VWF multimers [9,10]. In phys-
iologic conditions, ADAMTS13 is in a latent, closed conformation and VWF, secreted
by platelets and endothelial cells, is in a globular state (Figure 1a) [45,46]. Proteolytic
activity of ADAMTS13 on VWF is dependent on the conformational change of both pro-
teins [45–50]. Under shear forces VWF unravels and exposes its A1 domain allowing for
interaction with platelets through the GpIb/IX/V complex (Figure 1b) [51–53]. In this
unraveled state, the A2 domain of VWF is elongated and exposes the ADAMTS13 binding
sites [48,50] and the cleavage site Tyr1605-Met1606 [9,10]. Initial interaction of CUB1-2
domains with VWF D4-CK domains allosterically activates ADAMTS13, inducing an open
conformation (Figure 1c) [47,49]. Sequential exosite interactions and binding of the
disintegrin-like domain of ADAMTS13 to VWF induces further allosteric activation of
the metalloprotease domain which results in proteolysis (Figure 1d) [54]. When severe
ADAMTS13 deficiency (<10%) is present, ULVWF multimers can accumulate leading
to unregulated platelet adhesion and aggregation, resulting in TTP with disseminated
microthrombi and organ ischemia [4,7,26].

Though a severe ADAMTS13 deficiency is necessary for the development of TTP,
enzyme deficiency alone may not be sufficient to induce the clinical syndrome [40,55–58].
Activation of the complement system has also been suggested to play a role in acute
TTP [59–62]. In fact, ULVWF multimers serve as a scaffold for the assembly and activation
of the alternative pathway of the complement system [61]. VWF acts as a cofactor for
complement factor I mediated cleavage and inactivation of complement C3b, thereby
regulating alternative pathway activation. This regulatory process is dependent on VWF
multimer size with the smaller, physiologic VWF multimers enhancing cleavage of C3b
and the ULVWF multimers losing this function [62]. Further studies have demonstrated
a correlation between the presence of ULVWF multimers and higher levels of sC5b-9,
C3a, and C5a [63]. Experimental mouse models have recently demonstrated a synergistic
effect of ADAMTS13 deficiency and complement dysregulation. Mice with Adamts13−/−

or heterozygous complement factor H (CFH) hyperfunctional mutation (cfhW/R) alone
remained asymptomatic. However, mice that were both Adamts13−/− and cfhW/R went
on to develop clinical TMA findings [64]. Clinically, complement activation has also been
reported to be associated with increased mortality from an acute TTP episode [60]. These
and other findings have led to a “second hit” hypothesis, suggesting that another stressor
in conjunction with severe deficiency of ADAMTS13 activity is usually required to develop
clinical TTP [65,66].
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Figure 1. Mode of action of ADAMTS13. (a) Under normal circumstances, multimeric von Wil-
lebrand factor (VWF) circulates in the plasma in a globular conformation, in which its A1 domains 
are concealed, and so does not interact with platelets. ADAMTS13 circulates in a “closed” confor-
mation stabilized through the interaction of the C-terminal CUB domains with the central Spacer 
domain. The MP domain of ADAMTS13 also has a latent conformation in which the active site cleft 
is occluded by the Ca2+-binding loop. This prevents ADAMTS13 from proteolyzing off-target sub-
strates and confers resistance to plasma inhibitors. (b) Following vessel damage, the endothelium 
(EC) is disrupted to reveal subendothelial collagen. Globular VWF binds to this surface via its A3 
domain and unravels into an elongated conformation in response to the shear forces exerted by the 
flowing blood. This reveals the A1 domain that can then capture platelets via the GPIbα receptor on 
the platelet surface. Unravelling of VWF also unravels the VWF A2 domain into a linear polypeptide 
conformation that reveals the binding sites for ADAMTS13 and the Tyr1605-Met1606 cleavage site, 
making it susceptible to proteolysis by ADAMTS13. (c) ADAMTS13 recognizes unfolded VWF 
through multiple interactions. (1) The CUB domains bind the VWF D4-CK domains, which (2) in-
duces their dissociation from the Spacer domain. (3) The Spacer and (4) cysteine (Cys)-rich domain 
exosites recognize the C-terminal region of the unfolded A2 domain to bring the enzyme and sub-
strate into proximity. (d) Once bound, (5) the disintegrin-like (Dis) domain exosite engages VWF 
residues Asp1614–Asp1622. This interaction (6) induces an allosteric change in the MP domain. This 
causes a conformational change, disrupting the “gatekeepertriad” that otherwise occludes the active 
site cleft, to reveal the S1′ pocket. Once allosterically activated, (7) the MP domain proteolyzes the 
scissile bond. Petri et al. [54], pp. 1–16. The corresponding author, James Crawley agreed to use of 
the Figure. No changes were made to the original figure. Creative Commons License: http://crea-
tivecommons.org/liceses/by/4.0/ 
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Figure 1. Mode of action of ADAMTS13. (a) Under normal circumstances, multimeric von Willebrand
factor (VWF) circulates in the plasma in a globular conformation, in which its A1 domains are
concealed, and so does not interact with platelets. ADAMTS13 circulates in a “closed” conformation
stabilized through the interaction of the C-terminal CUB domains with the central Spacer domain.
The MP domain of ADAMTS13 also has a latent conformation in which the active site cleft is occluded
by the Ca2+-binding loop. This prevents ADAMTS13 from proteolyzing off-target substrates and
confers resistance to plasma inhibitors. (b) Following vessel damage, the endothelium (EC) is
disrupted to reveal subendothelial collagen. Globular VWF binds to this surface via its A3 domain
and unravels into an elongated conformation in response to the shear forces exerted by the flowing
blood. This reveals the A1 domain that can then capture platelets via the GPIbα receptor on the
platelet surface. Unravelling of VWF also unravels the VWF A2 domain into a linear polypeptide
conformation that reveals the binding sites for ADAMTS13 and the Tyr1605-Met1606 cleavage site,
making it susceptible to proteolysis by ADAMTS13. (c) ADAMTS13 recognizes unfolded VWF
through multiple interactions. (1) The CUB domains bind the VWF D4-CK domains, which (2)
induces their dissociation from the Spacer domain. (3) The Spacer and (4) cysteine (Cys)-rich domain
exosites recognize the C-terminal region of the unfolded A2 domain to bring the enzyme and
substrate into proximity. (d) Once bound, (5) the disintegrin-like (Dis) domain exosite engages VWF
residues Asp1614–Asp1622. This interaction (6) induces an allosteric change in the MP domain.
This causes a conformational change, disrupting the “gatekeepertriad” that otherwise occludes the
active site cleft, to reveal the S1′ pocket. Once allosterically activated, (7) the MP domain proteolyzes
the scissile bond. Petri et al. [54], pp. 1–16. The corresponding author, James Crawley agreed
to use of the Figure. No changes were made to the original figure. Creative Commons License:
http://creativecommons.org/liceses/by/4.0/.
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3.2. Congenital ADAMTS13 Deficiency

cTTP (also known as Upshaw–Schulman syndrome OMIM 274150) is an autosomal
recessive condition caused by biallelic mutations in the ADAMTS13 gene located on chro-
mosome 9q34 [14]. Approximately 200 causative mutations have been identified in more
than 150 patients, which span the entire ADAMTS13 gene [14,39–42,67,68]. The major-
ity of ADAMTS13 mutations are confined to single families [40,42]. Missense mutations
are most common (59%), followed by nonsense mutations (13%), deletions (13%), splice
site mutations (9%), and insertions (6%) [67]. There is some geographic variability and
certain mutations have increased frequency in different regions. Two mutations in par-
ticular, p.R1060W [39,41,42,68–72] and insertion c.4143_4144dupA [42,68,69,73] are more
prominent in cTTP patients with European ancestry. The p.R1060W mutation, a single
nucleotide variant located on exon 24, also occurred in a high proportion (75–80%) of cTTP
patients that presented during pregnancy in the French and UK cohorts [70,71]. Though
no definite genotype–phenotype relationships have been established [41,67], earlier onset
of disease appears to be related to earlier sequence mutations in the prespacer region of
ADAMTS13 [41,72,74]. Often, mutations in ADAMTS13 result in secretion deficiencies
but they can also affect ADAMTS13 activity [67,74–76]. Indeed, in an effort to explain
the variance of clinical phenotype, residual ADAMTS13 activity of different genotypes
was measured and the results showed that residual ADAMTS13 activity <3% was cor-
related with earlier age of disease onset, need for prophylactic plasma infusions, and
an annual event rate >1 [42,74]. However, this does not fully explain the phenotypic
differences in cTTP as studies have demonstrated that many patients homozygous for
the c.4143_4144dupA mutation had ADAMTS13 activity <1% but widely varying clinical
courses [42,69,73].

3.3. Acquired ADAMTS13 Deficiency
3.3.1. Risk Factors

iTTP is due to acquired anti-ADAMTS13 autoantibodies [11,12]. Certain factors,
such as African ancestry and female sex, predispose to the development of these anti-
bodies [29–33]. Human leukocyte antigen (HLA)-DRB1*11 and HLA-DQB*03:01 alleles
are also overrepresented in white iTTP patients, with HLA-DRB1*04 having a protective
effect [77–80]. The frequency of the HLA-DRB1*04 allele is dramatically decreased in iTTP
patients with African ancestry, indicating that a low natural frequency of this allele may
contribute to the greater risk in this population. However, there does not appear to be an
increased risk of mortality in these patients [33]. An analysis of Japanese patients identified
HLA-DRB1*08:03, HLA-DRB3/4/5*blank, HLA-DQA1*01:03, and HLA-DQB1*06:01 as
predisposing factors for iTTP, with HLA-DRB1*15:01 and HLA-DRB5*01:01 being iden-
tified as weakly protective [81]. In contrast to white iTTP patients, HLA-DRB1*11 and
HLA-DRB1*04 were not associated with iTTP in the Japanese [81].

3.3.2. Anti-ADAMTS13 Autoantibodies

Anti-ADAMTS13 autoantibodies are largely divided into two categories: inhibitory
and non-inhibitory. Inhibitory antibodies neutralize the proteolytic activity of ADAMTS13
and non-inhibitory antibodies bind to the protease, accelerating its clearance from
plasma [11,12,82–84]. It was previously widely held that inhibitory antibodies were the
main cause of ADAMTS13 deficiency, but recent studies have demonstrated that antigen
depletion also significantly contributes to deficiency [85]. Even a small amount of anti-
ADAMTS13 autoantibodies can induce ADAMTS13 deficiency [86]. Anti-ADAMTS13
autoantibodies have been found against all domains of ADAMTS13, indicating a poly-
clonal immune response. However, the spacer domain of ADAMTS13 has been iden-
tified as an immunogenic region, as anti-spacer antibodies are present in most iTTP
patients [85–92]. Recently, anti-ADAMTS13 autoantibodies that induce the open con-
formation of ADAMTS13 have been identified [18,93]. The role these conformation-
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changing antibodies play in the pathophysiology of TTP and their clinical significance is still
being explored.

The most common isotype class of anti-ADAMT13 autoantibodies are IgG, followed
by IgA and IgM (20% of cases). Among the IgG isotype, the IgG4 subclass is most common,
followed by IgG1 [83,91,94–98]. During acute episodes of iTTP, approximately 75% of cases
have detectable free anti-ADAMTS13 IgG [29]. The anti-ADAMTS13 autoantibody isotype
may contribute to the severity of the disease phenotype. High IgA antibody titers were
suggested to be associated with lower platelet counts, increased mortality, and a worse
prognosis [94–96]. Though no bacterial or viral infections are known to directly lead to
iTTP, molecular mimicry between ADAMTS13 and certain pathogens such as influenza
A [99], Helicobacter pylori [100], Legionella [101], hepatitis C virus [102], and HIV [103] may
evoke an immune response [91,104].

3.3.3. Immune Complexes

In addition to free anti-ADAMTS13 autoantibodies, immune complexes containing
ADAMTS13 have also been found in 39–93% of patients during acute iTTP [105–107]. Given
that C3a and C5a are elevated during the acute iTTP episode, this could suggest that the
complement is activated through the classic pathway, via ADAMTS13 antigen-antibody
immune complexes; the elevated levels of factor Bb, however, suggest activation of the
alternative pathway [60,63,104,105,108]. The clinical significance of complement activation
in TTP is still unclear, though it further supports the “second hit” hypothesis that another
physiologic stressor in conjunction with severe ADAMTS13 deficiency is required to induce
the clinical syndrome [65,66].

3.3.4. Primary and Secondary iTTP

iTTP is classified as primary when no obvious underlying associated disease can be
determined and as secondary when a defined underlying disorder is identified [27]. The
majority of iTTP cases are primary. Secondary iTTP can be associated with infections as
mentioned previously, though the best evidence is its association with HIV [103,109,110].
Acute stressors, such as pancreatitis, may induce secondary iTTP [111]. Many drugs have
also been implicated in secondary TMA but are only rarely accompanied by ADAMTS13
deficiency, indicating that they mostly represent a separate drug-induced TMA (DI-TMA)
and not TTP [112]. One exception is ticlopidine, which has been associated with severely
deficient ADAMTS13 and this condition may be considered as secondary iTTP [113].
Notably, not all thienopyridine-derivatives (ticlopidine, clopidogrel, and prasugrel) are
associated with TTP. Of 97 cases of TMA associated with ticlopidine, 80% had severely
deficient ADAMT13 activity confirming the diagnosis of TTP. A clear causal relationship,
however, has not been confirmed between the use of ticlopidine and the development of
anti-ADAMTS13 antibodies. In 197 patients with clopidogrel associated TMA, 0% had
severely deficient ADAMTS13 [114], which is consistent with DI-TMA, not TTP. Secondary
iTTP can also be associated with various autoimmune conditions, though it is most com-
monly associated with systemic lupus erythematosus (SLE) [23,24,115–117]. In either
primary or secondary iTTP, prompt therapy is essential. Secondary iTTP typically also
requires treatment of the underlying condition in addition to standard TTP therapies.

4. Diagnosis
4.1. Clinical Presentation

Previously, TTP was defined by a clinical “pentad” consisting of fever, microan-
giopathic hemolytic anemia, thrombocytopenia, neurological deficits, and renal insuf-
ficiency [4]. However, the pentad was reported at a time before the effectiveness of
plasma-based therapy in treating TTP was firmly established. Today, the presence of throm-
bocytopenia and MAHA alone, without an alternative explanation, should prompt serious
consideration of the diagnosis of TTP or another TMA. Large cohort studies from various
registries worldwide indicate that less than 10% of patients with acute TTP present with all
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five symptoms [29–31,35–37]. In fact, the clinical features of acute TTP can be extraordi-
narily diverse and a high degree of suspicion is required to diagnose TTP and promptly
initiate appropriate management [118]. The differential diagnosis for patients with possible
TTP is broad and described in Table 1. In obstetric patients with TMA, hemolysis, elevated
liver enzyme, and low platelet (HELLP) syndrome and preeclampsia should be ruled
out prior to evaluating for other conditions such as iTTP, cTTP, or complement-mediated
hemolytic-uremic syndrome (CM-HUS) [27,112,119].

Table 1. Differential diagnosis for patients presenting with MAHA-T [27,112].

Disease Comment

TTP Defined by ADAMTS13 activity <10%

IA-HUS TMA presenting 5–7 days after infection, often hemorrhagic
colitis caused by enteropathogenic Escherichia coli, or Shigella.

CM-HUS Triggered by infections, vaccination, pregnancy, or surgeries.
Diagnosis may be confirmed by complement mutations

DI-TMA
May occur with gemcitabine, bleomycin, mitomycin, quinine,
cyclosporine, simvastatin, and others. VEGF inhibitors have
also been implicated.

TA-TMA

May occur with hematopoietic stem cell transplantation or solid
organ transplantation. Often associated with
immunosuppressive therapy (tacrolimus or cyclosporine A),
GVHD, or underlying opportunistic infections

Malignant HTN TMA
TMA precipitated by chronic, severe uncontrolled HTN. Acute
but not chronic end-organ injury may improve with control of
blood pressure

DIC
Coagulopathy with TMA caused by underlying condition, most
often sepsis, malignancy, trauma, obstetric complications, or
hematologic disorder

APLS TMA in context of underlying autoimmune disease and
meeting positive diagnostic criteria for APLS

Pregnancy-associated TMA
(HELLP syndrome,
preeclampsia)

TMA associated with obstetrical complications. Presence of
significant proteinuria and de novo HTN are concerning for
preeclampsia. Treatments can include control of BP
and delivery

APLS, antiphospholipid syndrome; BP, blood pressure; CM-HUS, complement-mediated hemolytic-uremic
syndrome; DIC, disseminated intravascular coagulation; DI-TMA, drug-induced thrombotic microangiopathy;
GVHD, graft versus host disease; HELLP, hemolysis, elevated liver enzyme, and low platelet syndrome; HTN,
hypertension; IA-HUS, infection-associated hemolytic-uremic syndrome; MAHA-T, microangiopathic hemolytic
anemia with thrombocytopenia; TA-TMA, transplant-associated thrombotic microangiopathy; TMA, thrombotic
microangiopathy; TTP, thrombotic thrombocytopenic purpura; VEGF, vascular endothelial growth factor.

Acute TTP almost uniformly presents with severe thrombocytopenia (typically
<30 × 109/L) and microangiopathic hemolytic anemia, often with evidence of erythrocyte
fragmentation on the peripheral blood smear [119]. Frequently, other classical parame-
ters of hemolysis are also present, including an undetectable haptoglobin concentration
accompanied by an elevated reticulocyte count, elevated total bilirubin (predominantly
unconjugated), and an elevated lactate dehydrogenase (LDH) level, a marker for both
red cell destruction and organ ischemia [120]. Coombs’ testing is usually negative and
coagulation parameters are not severely deranged in TTP.

Signs and symptoms of organ ischemia due to microthrombi formation are variable
at presentation. More than 60% of patients have neurological manifestations which range
broadly from mild confusion or altered sensorium to stroke, seizures, or
coma [25,29,30,36,37]. Gastrointestinal ischemia is present in 35% of patients and can
result in abdominal pain, nausea, and diarrhea [29]. Evidence of myocardial ischemia
is present in a quarter of acute TTP patients and can be characterized by an abnormal
electrocardiogram, or more commonly, elevated cardiac troponin-I measurements. Cardiac
symptoms consistent with congestive heart failure or myocardial infarction can also be
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seen [121]. Renal injury is not uncommon in TTP, though acute renal failure requiring
renal replacement therapy is quite rare in iTTP. Hematuria and proteinuria are the most
commonly seen renal manifestations. Though modest renal insufficiency may occur, most
patients present with a creatinine below 2 mg/dL [122–125]. Severely deficient ADAMTS13
activity serves to confirm the diagnosis of TTP [11,12,27].

4.2. ADAMTS13 Investigation
4.2.1. ADAMTS13 Activity

Assaying the ADAMTS13 activity is the first test which should be undertaken in pa-
tients with a suspected TMA. Severe ADAMTS13 deficiency, which is defined by an activity
level <10%, is required to confirm the diagnosis of TTP (Figure 2) [119]. ADAMTS13 activity
assays are based on degradation of either full-length VWF or synthetic peptides of VWF by
ADAMTS13 in the plasma sample being tested. VWF cleavage products are detected by
fluorescence resonance energy transfer (FRETS), enzyme-linked immunosorbent assays
(ELISAs), surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF)-mass
spectrometry, electrophoresis, reduced collagen binding, or reduced ristocetin-induced
platelet agglutination [11,12,126–133]. Though multiple assays have been developed, the
FRETS-VWF73-based assay [128,134] is most commonly used in clinical settings [135]
and is considered as the reference method for ADAMTS13 activity, typically calibrated
against the World Health Organization International Standard ADAMTS13 plasma (normal
100%) [136]. However, ADAMTS13 activity testing is labor intensive, time consuming,
and limited to reference laboratories typically. Though the FRETS assay can be completed
quickly, the turnaround time for results can be three to six days as it is typically performed
only in reference centers. Given the variability in ADAMTS13 testing turnaround time
for any individual center, point-based scoring systems which predict the probability of
severely deficient ADAMTS13 have been developed to avoid delays in prompt treatment
initiation [122,137,138]. Importantly, these scores are not meant to replace ADAMTS13
testing but to aid decision making until test results are available. Recently, fully automated
chemiluminescence immunoassays have been developed with drastically reduced analyti-
cal times of approximately 30 min [139,140]. In addition, a semiquantitative ADAMTS13
activity assay has also been developed which provides an easily interpreted four-level
indicator of ADAMTS13 activity, allowing identification of activity levels < 10% [141]. A
potential advantage of such an assay is rapid screening for severely deficient ADAMTS13
activity which can be utilized at non-specialized centers to facilitate referral to tertiary
centers for additional testing and management.

4.2.2. Anti-ADAMTS13 Autoantibodies

When severely deficient ADAMTS13 activity is confirmed, the next step of investiga-
tion is to determine if an antibody inhibitor to ADAMTS13 is present [11,12]. Understand-
ing the mechanism of ADAMTS13 deficiency is critical in differentiating iTTP from cTTP
and has important treatment implications. This distinction is also especially important in
children and obstetrical patients, owing to higher rates of cTTP in these cohorts [29,34,71].
ADAMTS13 autoantibodies, predominantly anti-ADAMTS13 IgG, can be readily detected
using in-house or commercial ELISA kits by laboratories [83,94]. A Bethesda assay can
only detect ADAMTS13 autoantibodies which functionally inhibit ADAMTS13 (inhibitory
antibodies), unlike the anti-ADAMTS13 IgG ELISA which can detect both inhibitory and
non-inhibitory antibodies [25,142]. For both inhibitory and non-inhibitory anti-ADAMTS13
autoantibodies, assays only detect free autoantibodies whereas those bound to ADAMTS13
(immune complexes) are not detected by standard assays. In patients who have persistent
severe ADAMTS13 deficiency during periods of remission and in whom no inhibitory au-
toantibody is detected, ADAMTS13 gene analysis should be pursued to confirm a diagnosis
of cTTP [38].
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relapse events can help establish a diagnosis.

4.2.3. ADAMTS13 Antigen

ADAMTS13 antigen can be measured by ELISA but this is not yet part of routine
clinical practice. A recent study evaluated the prognostic value of anti-ADAMTS13 autoan-
tibody titers and antigen levels in patients with iTTP [143]. Patients in the lowest quartile,
with an antigen level <1.5%, had a mortality rate of 18% compared with a mortality rate
of ~4% for those in the highest quartile, with an antigen level >11%. Those in the lowest
antigen quartile and the highest antibody quartile had the highest mortality rate of 27%.
This suggests that there could be some prognostic value for this test and that it has the
potential to be incorporated in clinical practice in the future.

4.3. Emerging Biomarkers

It has previously been demonstrated that ADAMTS13 circulates in the “open” confor-
mation in iTTP patients during the acute phase [93]. Recently, anti-ADAMT13 autoantibod-
ies were revealed to induce the open ADAMTS13 conformation. Additionally, the open
ADAMTS13 conformation preceded significant decrement in ADAMTS13 activity in one
patient followed longitudinally [18]. While these findings warrant further study, there are
many potentially important implications with regard to treatment and long term follow-
up. As discussed previously, though it is a major risk factor, not all patients who have
undetectable ADAMTS13 activity in remission uniformly go on to relapse [55,56,58,144].
However, being able to identify the open versus closed conformation of ADAMTS13 may
potentially be useful to decide on the necessity of prophylactic therapy in select iTTP
patients during remission.
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5. Acute Management

TTP is a clinical emergency and in patients with suspected TTP treatment should be
initiated promptly as delays in therapy may result in significant morbidity and mortality.
Often therapy decisions are required prior to the availability of confirmatory ADAMTS13
testing. A blood sample for ADAMTS13 activity testing should immediately be obtained
from a patient with TMA and frontline therapy can then commence based on clinical
presentation alone. Severe ADAMTS13 deficiency is still required to confirm the diagnosis
but should not delay the initiation of treatment [145]. Below are definitions of treat-
ment response from the International Working Group for Thrombotic Thrombocytopenic
Purpura [27]:

• Clinical response—a normalization of the platelet count to a level greater than the
lower limit of the established reference range (150 × 109/L) and the LDH level to
<1.5 × the upper limit of normal (ULN). If initial presentation is severe with evidence
of significant end-organ damage, stabilization of these parameters with improvement
in function should also be required to qualify for a clinical response.

• Clinical remission—a sustained clinical response which is maintained for >30 days
after the cessation of plasma exchange.

• Exacerbation—a decreasing platelet count with rising LDH and the need to restart
plasma exchange therapy within 30 days of cessation after an initial clinical response
is noted.

• Relapse—a fall in platelet count below the lower limit of the established reference
range (~150 × 109/L), with or without clinical symptoms, during a clinical remission
that requires reinitiating therapy. ADAMTS13 activity will most likely be <10%.

• Refractory TTP—persistent thrombocytopenia (platelet count <50 × 109/L, without
increment) and persistently elevated LDH (>1.5 × ULN) despite five plasma exchange
treatments in conjunction with adequate steroid treatment. If platelet count remains
<30 × 109/L, this is classified as severe refractory TTP.

5.1. iTTP

Patients with both primary and secondary iTTP should be treated similarly in the
acute inpatient setting. Importantly, patients with secondary iTTP should also have the
underlying etiology managed appropriately in addition to the acute iTTP event. For
example, in a patient with secondary iTTP due to underlying HIV infection, appropriate
antiretroviral therapy would also be warranted in addition to management of TTP.

5.1.1. Plasma Exchange

Therapeutic plasma exchange (TPE) with fresh frozen plasma (FFP) replacement is
the foundation of front-line therapy for TTP [8]. The proposed mechanism of TPE is that it
supplies adequate levels of ADAMTS13 while removing circulating anti-ADAMTS13 au-
toantibodies. Delays in therapy can lead to early mortality, which may be preventable with
prompt initiation of TPE [146]. Typically 1–1.5× plasma volume exchange is performed for
the first three days, followed by 1× plasma volume exchange each day thereafter [8]. While
there is no optimal duration of therapy or pre-specified number of procedures required,
therapy should be continued daily until clinical response is achieved and sustained for two
days. In patients with refractory TTP or evidence of progressive end organ damage, more
intensive therapy, such as twice daily TPE, may be considered [147]. The efficacy of this
approach is difficult to determine as it is usually accompanied by the addition or intensifica-
tion of concurrent therapies. Generally, there are no significant differences between readily
available therapeutic plasma replacement products [148,149]. Previously, cryosupernatant
plasma devoid of ULVWF multimers was suggested to be more efficacious than fresh
frozen plasma [150], but equivalency of these plasma products was demonstrated in a
small randomized controlled trial [151].
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5.1.2. Immune Suppression

In conjunction with TPE, immunosuppressive therapy is a cornerstone of acute iTTP
management. The general principle of therapy is to target antibody production to allow
for recovery of circulating levels of ADAMTS13. Therapy is typically started concurrently
with TPE.

Glucocorticoids: steroids are widely used in conjunction with TPE at the initiation
of therapy for acute iTTP. Though there are no randomized clinical trials comparing TPE
with steroids vs. TPE alone, there is high biological plausibility for concurrent immunosup-
pression given the autoimmune nature of the condition. A small prospective randomized
controlled trial comparing prednisone with cyclosporine A as an adjunct to TPE demon-
strated that prednisone was superior in the initial treatment of iTTP [152]. This is also the
only prospective randomized trial confirming the efficacy of steroids in the acute setting
in decreasing anti-ADAMTS13 IgG and thereby increasing ADAMTS13 activity. No op-
timal dose or route of administration has been identified. High dose pulse steroids with
methylprednisolone 10 mg/kg/day for three days followed by 2.5 mg/kg/day thereafter
may be more efficacious than 1 mg/kg/day dosing [153]. Most standards of practice
recommend oral prednisone 1 mg/kg/day or equivalent [149], gradually tapered over
3–4 weeks after clinical response is achieved. In patients with severe presentations or
neurological symptoms, intravenous methylprednisolone 1 g/day for three days can
be considered.

Rituximab: rituximab is a monoclonal antibody against CD20, specifically targeting
B-cells. Rituximab is given most commonly during the acute phase of iTTP, typically during
the first days of hospitalization or shortly thereafter. A non-randomized prospective phase
2 trial has shown its safety and efficacy in the front-line setting [154]. Additionally, this
trial and many observational cohort studies suggest that rituximab given in the acute
phase results in fewer relapses [20,154–157]. While a lower relapse rate did not reach
statistical significance in all studies [158,159], a recent meta-analysis shows that rituximab
administered during an acute iTTP episode not only lowers the relapse rate vs. control,
but also reduces mortality [160]. Rituximab also appears to be effective in patients with
refractory TTP or poor response to TPE [20,157,158]. The standard dosing for rituximab
is 375 mg/m2 given weekly for a total of four doses, which is recommended for both
initial iTTP episodes and the acute phase of relapsing episodes. Emerging evidence for the
efficacy of low dose rituximab (100 mg–200 mg/per dose) comes from a small prospective
trial [161] and retrospective studies [162] but it has not yet been widely incorporated into
standard practice.

Alternative immunosuppressive therapies: in patients with contraindications to
steroids or with refractory disease, cyclosporine A can be effective [19,163]. Mycophenolate
mofetil has also been used with success in some case reports [164,165]. Prior to the use of
rituximab, vincristine was used for refractory disease, but this is no longer preferred [166].
Bortezomib, a proteasome inhibitor targeting plasma cells, has been used successfully as
an alternative agent to rituximab [167,168]. Cyclophosphamide and/or splenectomy are
also options for refractory or chronically relapsing cases [169].

5.1.3. Anti-VWF Strategy

Caplacizumab: caplacizumab, a humanized immunoglobulin originally from llamas,
targeting the A1 domain of VWF and thereby preventing its interaction with platelets is the
first medication approved specifically to treat TTP. In the recent phase 2 TITAN [21] and
phase 3 HERCULES [22] trials, caplacizumab along with TPE and immunosuppression
significantly reduced time to platelet count normalization and the exacerbation rate when
compared with placebo. The initial dose is 10 mg given intravenously prior to the first TPE,
followed by 10 mg daily and subcutaneously thereafter. Caplacizumab is well tolerated
and has a good safety profile with the most common side effect being minor bleeding,
which is often easily managed [170]. By blocking microvascular thrombi formation it is
hypothesized that tissue ischemia can be decreased. Caplacizumab effectively blocks the



J. Clin. Med. 2021, 10, 536 12 of 24

end-organ damage caused by TTP; however, concomitant immunosuppression is required
as the underlying deficient ADAMTS13 function is not addressed by this therapy. It
is unsurprising then that exacerbations and early relapses can occur when the drug is
discontinued while ADAMTS13 activity remains severely deficient. As a result, treatment
is typically continued until the recovery of ADAMTS13 activity. As a novel agent, one
limitation of incorporating caplacizumab into current standard practice is its high cost. At
its current price level (in the United States) as of 2020, a recent analysis suggested that
the addition of caplacizumab to the front line treatment for all patients with iTTP would
not be cost-effective [171]. As caplacizumab is increasingly utilized, treatment response
definitions may need to be revisited in the future as platelet count alone may not be an
accurate measure of disease activity.

N-acetylcysteine: N-acetylcysteine (NAC) is a mucolytic approved by the Food and
Drug Administration which is predominantly used to treat lung diseases. Its efficacy in TTP
has been examined given that VWF multimers polymerize in a similar manner to mucins.
NAC was found to degrade ULVWF multimer strings and inhibited VWF-dependent
platelet aggregation and collagen binding in vitro [172,173]. NAC has been effective in
some cases of severe and refractory iTTP but only a few case reports exist to date [174,175].
Animal models examining NAC have produced mixed results. NAC was able to prevent
iTTP in mice but NAC administration was not successful in resolving TTP in either mice or
baboons [176].

Emerging anti-VWF therapies: in 2012, ARC1779, a nucleic acid macromolecule, or
aptamer, that blocks platelet binding by the A1 domain of VWF, was evaluated in TTP
patients in a small trial [177]. Nine patients were recruited to the study, seven of whom
received ARC1779. The study was halted for financial reasons before sufficient patients
could be enrolled to ascertain the efficacy but there were no bleeding complications, de-
spite ARC1779 suppression of VWF function in patients with severe thrombocytopenia.
Development of ARC1779 has not been continued, but the safety profile from this trial
encouraged the development of second generation anti-VWF aptamers. A novel DNA
aptamer, TAGX-0004, showed a stronger ability to inhibit ristocetin- or botrocetin-induced
platelet agglutination/aggregation than ARC1779 and a similar inhibitory effect to capla-
cizumab [178]. Another synthetic aptamer, BT200, has shown inhibition of human VWF
in vitro and prevented arterial thrombosis in non-human primates [179]. Further studies
incorporating this approach are in development.

5.2. cTTP

Acute episodes in patients with known cTTP can be successfully treated with plasma
infusions (FFP, 10–15 mL/kg/day). Treatment is continued until clinical response is
achieved [38,41,42]. In patients with a recurring cTTP phenotype, prophylactic plasma
infusions may be required. Prophylactic plasma infusions have also been shown to im-
prove chronic symptoms not related to an acute episode [39,41]. In patients who re-
ceive chronic plasma infusions, the ADAMTS13 activity half-life has been reported to be
2.5–5.4 days [180–182]. Consequently, ADAMTS13 activity is expected to return to baseline
activity after approximately 5–10 days. Treatments are usually given every 2–3 weeks,
depending on clinical symptoms, platelet counts, and patient preferences [38,41,42,181,182].

5.3. Emerging Therapies

Upfront therapy of TTP has seen innovative strategies in the last five years. Recombi-
nant ADAMTS13 (BAX 930, rADAMTS13) has shown promise in a recent phase 1/2 study
in cTTP patients [183]. A phase 3 clinical trial to assess the efficacy of rADAMTS13 for
prophylactic and on-demand treatment of cTTP compared to plasma infusion therapy is
ongoing (https://www.clinicaltrials.gov/ct2/show/study/NCT03393975). There is also
evidence that rADAMTS13 may be effective in patients with iTTP, a hypothesis that is
presently being prospectively studied as well (https://www.clinicaltrials.gov/ct2/show/
NCT03922308) [184].

https://www.clinicaltrials.gov/ct2/show/study/NCT03393975
https://www.clinicaltrials.gov/ct2/show/NCT03922308
https://www.clinicaltrials.gov/ct2/show/NCT03922308
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With ever growing treatment options for the acute phase of TTP, the classic treatment
paradigm is constantly being re-examined. Though TPE is the cornerstone of acute therapy,
there are not insignificant risks associated with the procedures required and replacement
plasma products [23]. There are an increasing number of case reports detailing treatment
of acute iTTP with caplacizumab and immunosuppression, without TPE, in the context of
religious beliefs prohibiting blood products [185], shared decision making [186,187], and
anaphylaxis to plasma [188]. As novel treatments become readily available, acute TTP
management may soon enter an era without obligatory reliance on plasma exchange.

6. Special Populations
6.1. Pregnancy

TTP in the pregnant patient presents many difficulties and challenges. These patients
should be managed by a multidisciplinary team typically including hematologists, high-
risk obstetricians, and, occasionally, neonatologists. Prompt recognition and differentiation
from preeclampsia or HELLP syndrome followed by appropriate treatment is critical, as
maternal/fetal morbidity and mortality are high if unrecognized [70]. Pregnancy can trigger
acute episodes in cTTP patients who have previously been asymptomatic. Approximately
25–30% of all obstetrical TTP cases were due to cTTP in some cohorts [29,34,71]. Thus,
a high suspicion for cTTP is warranted in pregnant patients and appropriate diagnostic
workup should be pursued if there is no evidence of an inhibitor or anti-ADAMTS13
autoantibodies. Acute management of cTTP in pregnancy includes plasma infusions but
more severe cases may require TPE [38].

In pregnant patients with iTTP, the acute phase should be managed with TPE with the
addition of corticosteroids if tolerated [70]. Though corticosteroids may confer some risks
if given during the first trimester, these are largely outweighed by the potential benefits
in this clinical context. Further immunosuppression with rituximab has not been studied
in pregnant iTTP patients and its use is not standard. Routine use of caplacizumab is not
recommended given the theoretical risk of fetal hemorrhage.

In remission after an episode during pregnancy, cTTP patients may require prophylac-
tic therapy prior to and during their next pregnancy. The recently published International
Society of Thrombosis and Haemostasis (ISTH) guidelines for management of TTP state
that pregnant cTTP patients should receive prophylactic plasma infusions to prevent
relapse [189].

In remission after any acute episode, iTTP patients who are pregnant or could become
pregnant should have ADAMTS13 monitored periodically. Severely deficient ADAMTS13
activity in pregnancy appears to uniformly predict relapse of iTTP [190]. Though there
is currently a lack of strong evidence, prophylactic therapy for pregnant patients with a
history of iTTP and severely deficient ADAMTS13 activity in remission is suggested due to
the risk of mortality to both mother and fetus associated with relapse [191]. No standard
prophylactic regimen has yet been determined for this indication.

6.2. Jehovah’s Witnesses/Contraindication to Blood Products

Certain groups, including Jehovah’s Witnesses, may not accept exogenous blood prod-
ucts on the basis of religious or other beliefs. As TPE is the foundation of management of
acute episodes, this presents a unique challenge in the management of these patients. Vari-
ous regimens have previously been tried, including vincristine [192] and plasma exchange
with albumin [193] or cryosupernatant [194] replacement. With the use of caplacizumab
alongside improved immunosuppressive therapy, successful treatment without TPE has
been described not only in this patient population [185] but also in other selected patients,
including one with anaphylaxis to plasma [186–188].
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7. Long-Term Follow-Up and Remission Management

TTP was previously thought to only be an acute illness but long-term follow-up of
TTP survivors reveals many potential chronic complications and morbidity in addition to
the risk of relapse [23,24,195–197]. Severely deficient ADAMTS13 activity (<10–20%) in
remission suggests an increased risk of relapse and maintaining activity above this level
appears adequate to prevent relapse [55,56,198]. Therefore, serial ADAMTS13 activity
should be monitored in patients after remission. This is routinely accompanied by a
chemistry panel, complete blood count, and measurement of LDH level. After resolution of
an acute episode, ADAMTS13 activity can be measured monthly for 3 months, then every
3 months for 1 year, then every 6–12 months if stable. If ADAMTS13 activity consistently
decreases, then more frequent monitoring may be appropriate [191]. However, ADAMTS13
activity is not a perfect predictive biomarker and not all patients with severely deficient
activity go on to relapse [58]. Further studies highlighting the role of complement activation
in the presence of ULVWF multimers suggest that the addition of other biomarkers may
more accurately predict relapse in asymptomatic patients [63]. Emerging biomarkers
such as the “open” vs. “closed” conformation of ADAMTS13 may also help to better
predict which patients with severely deficient activity will ultimately progress to another
episode [18,93].

In asymptomatic patients with ADAMTS13 activity persistently <10%, preemptive
therapy with rituximab can effectively prevent relapse [144,160,198]. Cyclosporine has
also been used for prophylaxis [199] and can be an option for patients who do not re-
spond to rituximab. For the chronically relapsing patient, splenectomy is a viable option.
Though falling out of favor with the development of improved immunomodulatory ther-
apy, splenectomy has both a high and a durable response rate in some case series with a
10-year relapse-free survival of 70% [200]. Splenectomy is usually efficacious, with a nonre-
sponse rate as low as 8% in some reports [201]. It has also been shown to induce durable
remissions and reduce relapse rate in some of these challenging patients [200,202]. Though
previously splenectomy had increased risk for adverse events, especially when used in
refractory TTP [203], improvements in surgical technique have decreased complications
considerably, especially when laparoscopic technique is utilized [201].

Long-term complications are prevalent in both iTTP and cTTP patients. Many adverse
health sequelae are seen in TTP survivors, including higher rates of obesity, stroke, hyperten-
sion, mood disorders, cognitive impairment, and reduced quality of life [42,195,196,204–206].
TTP survivors also appear to have a higher all-cause mortality than reference popula-
tions [24,197]. Low-normal levels of ADAMTS13 activity have recently been implicated as
a risk factor for coronary artery disease [207,208], stroke [209], and all-cause/cardiovascular
mortality [210] in the general population. While the mechanism for the development of
these complications is not known, reduced ADAMTS13 activity may contribute to car-
diovascular risk. Further studies investigating this relationship as well as other potential
mechanisms leading to the development of these chronic complications are warranted.

8. Conclusions/Summary

TTP is a life-threatening illness which requires prompt recognition and management
given its high mortality if left untreated. Acute management and long-term follow-up
are evolving as new therapies and potential biomarkers emerge. Given the rarity of this
disease, TTP registries and multicenter cohort studies are critical to continue advancing
the field.
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