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The production of platelets is a complex process that involves hematopoietic stem cells (HSCs), their
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differentiated progeny, the marrow microenvironment and hematopoietic cytokines. Much has been learned
in the 110 years since James Homer Wright postulated that marrow megakaryocytes were responsible for
blood platelet production, at a time when platelets were termed the “dust of the blood”. In the 1980s a
number of in vitro culture systems were developed that could produce megakaryocytes, followed by the
identification of several cytokines that could stimulate the process in vitro. However, none of these cytokines
produced a substantial thrombocytosis when injected into animals or people, nor were blood levels inversely
related to platelet count, the sine qua non of a physiological regulator. A major milestone in our
understanding of thrombopoiesis occurred in 1994 when thrombopoietin, the primary regulator of platelet
production was cloned and initially characterized. Since that time many of the molecular mechanisms of
thrombopoiesis have been identified, including the effects of thrombopoietin on the survival, proliferation,
and differentiation of hematopoietic stem and progenitor cells, the development of polyploidy and proplatelet
formation, the final fragmentation of megakaryocyte cytoplasm to yield blood platelets, and the regulation of
this process. While much progress has been made, several outstanding questions remain, such as the nature of
the signals for final platelet formation, the molecular nature of the regulation of marrow stromal
thrombopoietin production, and the role of these physiological processes in malignant hematopoiesis.
Semin Hematol 52:4–11. C 2014 Elsevier Inc. All rights reserved.
THE HISTORY OF THROMBOPOIESIS

Carnot, Wright, and others in the early 20th century
defined the critical role of platelets in blood coagulation,
and their origin from the marrow megakaryocyte based on
elegant camera lucida images. Based on an evolving
understanding of erythropoiesis, particularly the identifi-
cation of erythropoietin as the humoral regulator of
erythrocyte production, Keleman coined the term “throm-
bopoietin” in 1958 to describe the humoral substance
responsible for platelet production.1

In the mid-1960s and 1970s, several groups attempted
to purify thrombopoietin from the plasma of thrombocy-
topenic animals; these early efforts were severely handi-
capped by inconvenient and insensitive assays for the
hormone, the in vivo incorporation of radiolabeled
methionine into newly formed platelets, and the attempts
failed to produce unequivocal proof of the existence of
thrombopoietin. In the 1980s a number of in vitro
megakaryocyte differentiation assays were developed,
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facilitating additional purification attempts; however,
while some claims were made of its biological activities,
attempts to produce a cDNA for thrombopoietin failed.

Occasionally in science, a finding from one field,
although in itself important, can have a catalytic and
profound effect on a seemingly unrelated area of research.
The discovery and characterization of the murine myelo-
proliferative leukemia virus (MPLV) had such an impact on
the search for thrombopoietin. MPLV causes an acute
myeloproliferative neoplasm in infected mice2; in 1990,
the responsible oncogene (v-mpl) was cloned, and the proto-
oncogene (c-Mpl) obtained 2 years later.3,4 Based on the
predicted structure of the encoded protein it was immedi-
ately evident that c-Mpl encodes a member of the
hematopoietic cytokine receptor family, which includes the
receptors for erythropoietin, granulocyte colony-stimulating
factor, granulocyte-macrophage colony-stimulating factor,
growth hormone, prolactin, and several interleukins (ILs).
However, when “c-Mpl receptor” was cloned, the corre-
sponding “c-Mpl ligand” was unknown. Based on the cell
from which the receptor was cloned, the bipotent erythroid/
megakaryocytic cell line HEL, we, and others, postulated
that the c-Mpl ligand might be thrombopoietin.
THE CLONING AND CHARACTERIZATION OF
THROMBOPOIETIN

Three distinct approaches yielded cDNA for thrombo-
poietin. Using an in vitro megakaryocyte-based assay, and
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the plasma from 1,100 thrombocytopenic rats, scientists at
Kirin Pharmaceuticals employed a 12-step conventional
purification scheme to obtain sufficient purified thrombo-
poietin to obtain amino acid sequence, and then cloned
cDNA for rat and then multiple species of thrombopoie-
tin, including the human hormone.5 Using the c-Mpl
proto-oncogene product coupled to an affinity matrix,
scientists at Genentech obtained sufficient purified porcine
Mpl ligand to allow amino acid sequencing and cDNA
cloning6 of ovine and human hormones. In contrast to the
biochemical purifications utilized by these groups, an
expression cloning strategy using a chemically mutated
c-Mpl-bearing cell line was used by Lok and Kaushansky
to obtain cDNA for murine and then human thrombo-
poietin.7,8 Initial in vitro experiments using the corre-
sponding recombinant proteins demonstrated the effect of
thrombopoietin on megakaryocyte maturation, and injec-
tions into normal mice resulted in impressive increases in
marrow megakaryocytes and peripheral blood platelet
counts.8

The cloned human thrombopoietin cDNA encodes a
polypeptide of 353 amino acids, including the 21 amino
acid secretory leader sequence7; the mature protein con-
sists of two domains. The amino-terminal 154 residues are
homologous to erythropoietin, which like other members
of the hematopoietic cytokine family displays a four helix
bundle fold,9 and binds to the c-Mpl receptor. The
carboxyl-terminal domain of thrombopoietin bears no
resemblance to any known proteins, and acts to prolong
the circulatory half-life of the hormone10; it also serves as
an intramolecular chaperone, aiding in the proper folding
of the polypeptide into the mature hormone.11
THE BIOLOGICAL ACTIVITIES OF
THROMBOPOIETIN

The availability of the recombinant protein allowed the
first detailed studies of the biological properties of throm-
bopoietin. Previous conjecture was that the hormone was
solely a megakaryocyte differentiation factor, driving the
maturation of megakaryocytes and platelet formation, but
had no effect on immature cells of the lineage or other
hematopoietic cell types. Initial studies with recombinant
thrombopoietin dispelled many of these incorrect assump-
tions. Thrombopoietin alone is able to stimulate the
proliferation of nearly all marrow megakaryocytic progenitor
cells (colony-forming unit, megakaryocyte [CFU-MK])
in vitro, and acts in synergy with other hematopoietic
cytokines, such as IL-3, IL-11, and stem cell factor
(SCF)12 to promote the growth of CFU-MK. In vitro,
thrombopoietin acts to increase megakaryocyte size and
expression of lineage-specific megakaryocyte surface pro-
teins, such as glycoprotein (GP)Ib and GPIIb/IIIa.8,13

Studies of megakaryocyte ultrastructure show increased
demarcation membrane and platelet granule formation
following culture with thrombopoietin, indicating that the
hormone primes megakaryocytes for platelet production.14
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And culture of marrow megakaryocytes in thrombopoietin
leads to pronounced polyploidy.15 However, the final
stages of platelet formation and release appear to be
thrombopoietin-independent, as withdrawal of the hor-
mone from late-stage megakaryocyte cultures does not
eliminate proplatelet formation; in fact, thrombopoietin
withdrawal is reported to stimulate it.16

Also at odds with the prevailing conventional wisdom on
thrombopoietin, in addition to its effects on megakaryocytic
progenitors and mature cells, thrombopoietin affects
hematopoietic stem cells (HSC) in vitro, especially when
used in combination with IL-3 or SCF17,18. Numerous
studies reported the expression of c-Mpl on the surface of
HSCs19,20, indicating the stem cell effects of thrombopoie-
tin are direct. And based on these results, thrombopoietin
has been included in many ex vivo cytokine cocktails
designed to expand HSCs for therapeutic use.21,22

More recently, an intriguing paracrine role for throm-
bopoietin/c-Mpl in maintaining quiescent Tie2þ HSCs at
the osteoblastic niche has been identified23. Osteoblasts
were found to release thrombopoietin, supporting the
survival and quiescence of HSCs; inhibition of this
interaction reduced the number of HSCs at the osteo-
blastic niche. Another mechanism by which thrombopoie-
tin affects HSCs is by promoting DNA repair,24 a finding
that could eventually be clinically translated to HSC
“protection” from genotypic damage during ionizing
radiation or chemotherapy.
In Vivo Thrombopoietic Effects of
Hematopoietic Cytokines

Once recombinant thrombopoietin was available puri-
fied protein was tested in a range of experimental animals.
The initial results were remarkable; within 5 days of daily
administration of subnanogram quantities of recombinant
murine “c-Mpl ligand”, mouse platelet counts were
quintupled.8 These initial experiments made obvious the
fact that the c-Mpl ligand obtained by the multiple groups
was thrombopoietin, as prior studies of the administration
of other megakaryocytic factors (e.g. IL-6, IL-11) would
result in, at most, a 50% increase in blood platelet counts.
That thrombopoietin is the primary physiological regu-
lator of thrombopoiesis was made clear by genetic studies;
the generation of mice engineered to lack either Thpo or
c-Mpl resulted in a 85-90% reduction (although not
complete elimination) of platelet counts, and its blood
levels were inversely related to platelet count25,26. That the
in vitro HSC effects of thrombopoietin were physiological
was then demonstrated when competitive repopulation
assays were performed on the c-Mpl27, revealing an
approximate 8-fold reduction in HSC activity of marrow
cells when compared to normal mouse marrow. Likewise,
transplantation of normal HSCs into lethally irradiated
normal recipient mice resulted in a 15-20 fold greater
increase in post-transplant stem cell expansion compared
to transplantation into Thpo-/- recipients.28 And the final
from ClinicalKey.com by Elsevier on November 05, 
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proof of the critical, non-redundant role of thrombopoie-
tin in HSC biology came from “experiments of nature”;
children born with congenital amegakaryocytic thrombo-
cytopenia, who nearly always progress to aplastic anemia
(stem cell depletion), almost universally display homozy-
gous, or compound heterozygous inactivating mutations of
c-Mpl,29 or far more rarely, Thpo.

As noted above, elimination of c-Mpl or Thpo reduces
thrombopoiesis to about 10-15% of normal. A number of
investigators have attempted to determine the origins of the
remaining platelet production. Given a modest effect of
IL-3, GM-CSF, oncostatin-M, IL-6 and IL-11 on mega-
karyopoiesis in vitro and in vivo, a number of studies
creating double knock-outs of c-Mpl and these other
cytokines or their receptors have been performed. The
combined reductions failed to reduce platelet levels below
that seen with c-Mpl deficiency alone. Based on the synergy
shown between thrombopoietin and erythropoietin in vitro,
we also genetically combined c-Mpl deficiency and Epo
receptor deficiency; we also found that the combined
elimination failed to further reduce thrombopoiesis over
that seen in c-Mpl deficient mice. However, the combination
of CXCL12 (previously termed stromal derived factor 1) and
fibroblast growth factor (FGF)-4, two cytokines that promote
megakaryocyte homing to the vascular niche in marrow, were
found to restore thrombopoiesis in c-Mpl or Thpo null mice,
unlike IL-6 or IL-1130. The investigators proposed that cells
or substances in the vascular niche was responsible for the
favorable effects of the two cytokines.

Despite significant advances in understanding the role of
thrombopoietin in HSCs, progenitors and megakaryocytes,
the physiologically relevant effects of thrombopoietin and
c-Mpl on platelet function remains somewhat elusive.
Platelets express c-Mpl and the molecular machinery required
for thrombopoietin signal transduction, including; JAK2,
STAT3, STAT5, Akt and Ras (see below). Superphysiolog-
ical amounts of thrombopoietin (4100ng/ml) directly trigger
platelet aggregation in vitro (reviewed in31), whilst more
physiological concentrations of the hormone prime platelets
for stimulation with other agonists, possibly by increasing
activity of Ras32. Thrombopoietin also has significant effects
on platelet adhesion under flow. Low thrombopoietin
concentrations (0.01-1ng/ml) accelerate firm platelet adhe-
sion to von Willebrand factor and prevent de-attachment at
higher flow rates, suggesting that thrombopoietin may be
important in thrombus formation33. However, despite many
years of clinical trials, and current clinical use, only a single
publication reports an excess of thrombosis in patients treated
with thrombopoietin or thrombopoietin receptor agonists,
and that was found in patients with severe liver disease
undergoing invasive and vascular procedures.34
The Thrombopoietic Marrow
Microenvironment

Evidence from many sources has established the exis-
tence of two distinct anatomical and functional marrow
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microenvironmental “niches”, the osteoblastic niche35 and
the vascular niche.36 Hematopoietic stem and progenitor
cells localize to both, but the functional effects on cells at
these distinct locations differ. Megakaryocyte maturation
and platelet formation are dependent on cellular migration
from the osteoblastic to the vascular niche. At this latter
site, once adequately mature, megakaryocytes extend
proplatelet processes through or between cells of the
sinusoidal endothelial layer and shed platelets into the
bloodstream.37

Marrow stromal cells are responsible for crafting these
local microeenvironments, through their expression of
soluble and surface bound cytokines, counter-receptors
for integrins and other adhesion molecules on the surface
of hematopoietic cells, and through their secretion of
extracellular macromolecules. A number of marrow cell
types elaborate matrix molecules, including osteoblasts,
endothelial cells, fibroblasts, adipocytes, CXCL12-
abundant reticular (CAR) cells (which surround sinusoidal
endothelial cells), and even hematopoietic cells such as
macrophages and megakaryocytes.38 In specific reference
to megakaryocyte development, marrow stromal cells have
been shown to secrete thrombopoietin,39,40 the primary
regulator of thrombopoiesis, CXCL12,41 which is a
primary chemokine attracting megakaryocytes and other
hematopoietic cells to the marrow microenvironment, and
acts to stimulate megakaryocyte growth,42 to express cell
surface-bound SCF,43,44 which acts in synergy with
thrombopoietin to promote megakaryocyte growth,45

and to express VCAM-1 and fibronectin, which bind to mega-
karyocyte integrin α4β1 and promote cell growth.46,47

Different fragments of microenvironmental fibronectin
have been shown to differentially support erythroid, or
megakaryocytic progenitors47,48, potentially providing a
mechanism for enhancing or suppressing thrombopoiesis
depending on the animal’s blood cell needs. Platelet-
endothelial cell adhesion molecule (PECAM)-1 plays a
critical role in megakaryocyte migration, as its genetic
elimination blunts cell migration in response to
CXCL12.49 And the interaction of microenvironmental
VWF and its megakaryocyte receptor glycoprotein Ib/V/
IX appears particularly important for proplatelet forma-
tion. In contrast, type I collagen, which localizes to the
osteoblastic niche, prevents platelet formation, where
megakaryocyte proliferation is favored over maturation
into platelets.50
Regulation of Thrombopoiesis

While a number of hematopoietic cytokines can
stimulate megakaryocyte growth in vitro (IL-3, GM-
CSF, SCF), and when injected in vivo some produce
modest increases in blood platelet counts (e.g. IL-6, IL-11),
the blood levels of these proteins do not vary with platelet
count except for IL-6 (see below on inflammation). In
contrast, plasma concentrations of thrombopoietin vary
inversely with the platelet count in patients with reduced
from ClinicalKey.com by Elsevier on November 05, 
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platelet production.51 Multiple organs display RNA tran-
scripts for thrombopoietin, being present at highest levels
in the liver in normal animals.6,7 One model that accounts
for the regulation of blood thrombopoietin levels is based
on the capacity of platelets to adsorb thrombopoietin from
solution, internalize and destroy it52; in patients with
thrombocytosis, the steady-state level of thrombopoietin
production is overwhelmed by platelet-mediated destruc-
tion, and so levels are low, and thrombopoiesis is low; in
contrast, in thrombocytopenic patients, with little of the
hepatic thrombopoietin production removed by platelets,
blood levels of the hormone to rise, driving increased
thrombopoiesis. Additional support for this model comes
from Thpoþ/- mice;26 loss of one allele of Thpo leads to a
40% reduction in platelet counts.

In addition to this “autoregulation” model, a growing
body of evidence suggests other mechanisms regulate
thrombopoietin production. At baseline, it is very difficult
to detect specific mRNA in marrow stromal cells. How-
ever, transcript levels are substantially increased in marrow
stromal cells in response to thrombocytopenia.39,53 The
mechanism underlying this response is only beginning to
be understood. It is known that platelet derived growth
factor (PDGF)-BB and fibroblast growth factor (FGF)-2
stimulate, and platelet factor 4, thrombospondin and
transforming growth factor (TGF)-β inhibit thrombopoie-
tin production from cultures of marrow stromal cells;54 on
balance, whole platelet extracts suppresses thrombopoietin
production.

In addition to marrow stromal cell thrombopoietin pro-
duction, a number of inflammatory states (e.g. ulcerative
colitis, rheumatoid arthritis) are associated with thrombo-
cytosis, and increased thrombopoietin levels.55,56 The
inflammation-induced increase in thrombopoietin expres-
sion is mediated by IL-6, which stimulates hepatocyte
thrombopoietin production both in vitro and in vivo.57,58

A final new model that helps explain the regulation of
blood thrombopoietin levels, and hence thrombopoiesis, is
platelet binding to the hepatic Ashwell-Morrell receptor,
which triggers enhanced hepatic thrombopoietin pro-
duction (see: http://www.thsna.org/Presentation_Upload/
presentation_uploads/86_57_86_57_Hoffmeister_2014_
03_THSNA_CHICAGO.pdf).
The Molecular Mechanisms of Thrombopoiesis

c-Mpl is a member of the type I cytokine receptor
family, along with receptors for a number of interleukins,
colony stimulating factors, growth hormone and erythro-
poietin. The receptors of this family are multimeric; either
homo- or heterodimeric, or heterotrimeric59. The c-Mpl
receptor is a homodimer. The binding of cognate ligand to
these receptors induces a conformational change in the
multimeric receptor, which triggers a number of phos-
phorylation events, including that of both the cytoplasmic
domain of the receptor and its associated proteins. How-
ever, type I cytokine receptors, including c-Mpl, lacks
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intrinsic kinase activity; instead it recruits and directly
associates with the cytoplasmic kinase JAK2 to mediate
phosphorylation and activation of downstream signaling
proteins. JAK2 associates with c-Mpl prior to the receptor
being trafficked to the membrane; in fact, the c-Mpl/JAK2
association stabilizes expression of the receptor, increasing
the presence of c-Mpl at the membrane.60

Extensive work using both c-Mpl-expressing cell lines
and primary marrow cells has identified a variety of
different intracellular proteins activated and squelched
following thrombopoietin engagement of c-Mpl. Due to
the relatively close homology between c-Mpl and the
erythropoietin receptor, initial studies focused on the JAK/
STAT pathway and identified JAK2 and TYK2 as the
immediate kinases that bind to c-Mpl and become
activated following thrombopoietin binding,61,62 leading
to the activation of the transcription factors STAT3 and
STAT5.63 Thrombopoietin also stimulates the phosphor-
ylation and formation of the Shc-Grb2-SOS adaptor
protein complex,64,65 activates the phosphatases SHIP
and SHPTP-2, and both the phosphoinositide-3-kinase
(PI3K)/Akt66,67 and Raf-1/MAP kinase pathways.68

The activation of both PI3K and MAPK are instru-
mental in mediating many effects of thrombopoietin on c-
Mpl bearing cells. A number of additional transcription
factors are activated in stem cells and megakaryocytes in
response to thrombopoietin. The Hox genes were first
recognized for their effects on body pattern development,
but were subsequently shown important in a number of
mature cell settings. HoxB4 and HoxA9 were shown to
influence the levels of HSCs.69,70

Thrombopoietin induced PI3K and MAPK lead to the
synthesis of HoxB4,71 and the nuclear translocation of
HoxA9,72 helping to explain the effect of the hormone on
HSCs. The cytokine can also stimulate expression of
hypoxia inducible factor,73 a transcription factor critical
for the expression of vascular endothelial cell growth
factor, which also influences stem cell expansion.74 In
addition to these molecular pathways that underlie the
favorable effects of the hormone on HSC expansion and/
or survival, thrombopoietin also influences stem/progeni-
tor cell lineage fate determination. The relative level of
expression of the transcription factor c-Myb influences the
lineage choice of bipotent erythroid/megakaryocytic pro-
genitors.75 By influencing the level of microRNA (miR)-
150, which influences the stability of c-Myb mRNA and
its translational efficiency, thrombopoietin acts to favor
the megakaryocytic lineage.76

One of the most obvious effects of thrombopoietin on
megakaryocytic progenitors is the induction and advance-
ment of endomitosis, resulting in a highly (32-128N)
polyploid cell. Detailed videomicroscopy revealed that
megakaryocytes replicate their DNA but abort mitosis in
mid anaphase,77 prior to cellular or nuclear division, and
do so over and again resulting in a highly polyploid cell.
The small G protein RhoA is expressed by many cells
types, and is distributed throughout the cytoplasm during
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midphase of the cell cycle. During mitosis, RhoA becomes
highly localized to the mitotic spindle, by virtue of it’s
activation by the guanine nucleotide exchange factors
GEF-H1 and ECT2. Endomitotic megakaryocytes express
abundant RhoA, but it fails to localize to the mitotic
spindle77,78 as occurs in normal diploid cells. Recent
studies have shown that endomitosis is critically dependent
on inactivation of GEF-H1 and ECT2, and hence, their
inactivation of RhoA.79 Consistent with this finding,
when RhoA was genetically eliminated in megakaryocytes
and platelets; the resultant mice displayed enhanced
polyploidy.80 However, a direct link between thrombo-
poietin signaling and RhoA (in)activation has not yet been
established. Obviously, additional studies will be required
to fully understand the molecular mechanisms underlying
megakaryocyte endomitosis.

Given its importance to hematopoiesis and the growth
promoting intracellular signaling pathways it activates,
stringent regulatory mechanisms are required to ensure
thrombopoietin signaling is tightly controlled. Two main
mechanisms exist by which thrombopoietin regulates its
own activity; activation of negative regulators, and inter-
nalization and degradation of its activated receptor. Of the
proteins activated or upregulated in response to thrombo-
poietin, Lyn, Lnk and suppressors of cytokine signaling
(SOCS) have all been identified as mediating important
negative feedback mechanisms. Inhibition of the Src
family kinase Lyn, enhanced thrombopoietin -mediated
ERK1/2 activation and proliferation in c-Mpl bearing cell
lines, and promoted megakaryocyte differentiation in bone
marrow cells.81 Moreover, a Lyn-deficient mouse exhibits
increased megakaryopoiesis and a greater signaling
response to thrombopoietin.82 Overexpression of the
adaptor protein Lnk, negatively regulates thrombopoietin-
mediated activation of STAT5 and ERK1/2 and inhibits
cell growth in cell lines, as well as attenuating megakar-
yopoiesis when overexpressed in hematopoietic progenitor
cells.83 Furthermore, Lnk-/- mice exhibit greatly increased
numbers of bone marrow megakaryocytes and their
precursors, and enhanced thrombopoietin-mediated acti-
vation of ERK1/2, Akt, STAT3 and STAT5 in megakar-
yocytes. Increased expression of SOCS proteins
dramatically inhibits thrombopoietin signaling by directly
binding to and down regulating the c-Mpl receptor and
downstream signaling proteins (reviewed in84).

In addition to activating negative regulators,
thrombopoietin-stimulation results in a rapid internal-
ization and degradation of c-Mpl. The adaptor protein-2
associates with the c-Mpl intracellular motif Y591RRL,
driving clathrin coat formation and endocytosis, while an
identical intracellular motif Y521RRL then targets the
internalized receptor to the lysosome and via two intra-
cellular lysine residues, K553 and K573, for ubiquitination
and proteasomal degradation.85,86 siRNA knockdown of
the E3 ubiquitin ligase Cbl reduced thrombopoietin-
mediated c-Mpl ubiquitination, indicating its role in the
process, although ubiquitination was not completely
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prevented, suggesting other E3 ubiquitin ligases may also
be involved.
Remaining Questions

Much has been learned about thrombopoiesis in the
100þ years since the origins of platelets from the marrow
megakaryocyte was first postulated, particularly in the
20 years since the cloning and initial characterization of
thrombopoietin. However, many questions remain. For
example, are there other physiologically relevant “throm-
bopoietic substances”, or cytokines exclusively restricted to
promoting the formation and release of platelets from
large, highly polyploid megakaryocytes? Do we now know
all of the relevant signaling pathways employed by c-Mpl
in transducing the myriad of signals sent to a cell by
thrombopoietin? What is the molecular link between
RhoA inactivation during megakaryocyte endomitosis
and thrombopoietin, if any? What are all the clinical roles
that thrombopoietin receptor agonists are likely to play,
and are they truly thrombogenic in certain circumstances?
And while the clear pathogenetic role of c-Mpl and its
downstream singling kinase, JAK2 in patients with mye-
loproliferative neoplasms was not discussed above, does
thrombopoietin contribute to mutant c-Mpl or mutant
JAK2 mediated disease? Only additional research will
definitively address these and other important physiolog-
ical, pathological and therapeutic questions.
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